130 resultados para high strength


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Having in mind that petroleum's history presents a huge growth, the exploration and production areas have been receiving lots of investments, in order to attend the increasing demand for gas and petroleum. Looking through that scenario, new technologies have been evolving in favor of discovering new natural petroleum deposits and act with effectiveness in truly deep waters without giving up the worldwide best operational security practices. The use of rigid pipes in marine installations have been rising quickly and, thanks to this reality, the many storage and pipe launching forms became study objects and are getting improved. The analysis of steel API X70 characteristics, proving that they are suitable for use in pipes developed to transport gas and petroleum is the theme of this presentation. A tensile test was conducted to determine the base metal's mechanical properties, draining's tension, traction's resistance, elasticity's modulus and maximum tension. An aspect that is concerning too is the metallographic analysis, in order to determine the studied iron's microstructure. Results of analyzes showed that the steel has high resistance, with good capacity for deformation and well defined yield point, concluding suitable for the application in question

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The multiphase steels are gaining increasing attention in scientific studies because of the different mechanical and microstructural properties that the material can achieve under different thermomechanical and heat treatments that can be submitted. In the present study, it was made a microstructural study thru the triple attack technic associated with optical microscopy and mechanical characterization of medium carbon AISI 4350 steel thru a tensile strength test, subjected to three routes of heat treatment: annealing, quenching and tempering and isothermal annealing. It was verified the predominance of ferrite-perlite constituent in the specimen annealed, martensitic in the quenched and tempered specimen and bainitic in the annealed isothermally specimen. The annealed material showed a higher ductility, while the hardened and tempered specimen showed the highest hardness and ultimately the bainitic specimen showed a combination of the two abovementioned mechanical properties. Thus, we proved that the multiphase steel SAE 4350 can be a versatile material with great potential for various industrial applications

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective: Mechanical properties of the acrylic resins used for denture fabrication may be influenced by water and temperature. Thus, the aim of this study was to evaluate the effect of thermocycling on the flexural and impact strength of a high-impact (Lucitone 199) and a urethane-based denture material (Eclipse).Materials and methods: Flexural strength (64 x 10 x 3.3 mm) and impact strength (60 x 6 x 4 mm) specimens were made following the manufacturers' instructions and assigned to two groups (n = 10): control (C) - not thermocycled - and T - thermocycled (5000 cycles between 5 and 55 degrees C). Specimens were submitted to three-point bending and Charpy impact tests.Results: Flexural strength (MPa) and impact strength (kJ/m(2)) data were analysed with two-way ANOVA (p = 0.05). The flexural strength of material Eclipse (C, 136.5; T, 130.7) was significantly higher than that of resin Lucitone 550 (C, 99.4; T, 90.1). Material Eclipse exhibited significantly higher impact strength (C, 6.9; T, 5.3) than the resin Lucitone 550 (C, 3.5; T, 3.0). For both materials, a significant decrease in flexural and impact strengths was observed when the specimens were thermocycled.Conclusion: Flexural and impact strengths were higher for Eclipse than for Lucitone 550, in both groups. Thermocycling decreased the flexural and impact strengths of Eclipse and Lucitone 550.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The objective of this study was to examine the effects of high intensity exhaustive running exercise on the muscular torque capacity of the knee extensors for two types of contraction (concentric and eccentric) at different angular velocities (60 and 180 degrees/s) in well-trained runners. Eleven male runners specialized in middle and long-distance running volunteered to participate in this study. Initially each subject performed, on different days, two familiarization sessions on an isokinetic dynamometer and an incremental treadmill test to volitional exhaustion to determine the velocity associated with the onset of blood lactate accumulation (OBLA). The subjects then returned to the laboratory on two occasions, separated by at least seven days, to perform maximal isokinetic knee contractions at each of the velocities under eccentric (Ecc) and concentric (Con) conditions. Conducted randomly, one test was performed after a standardized warm-up period of 5 min at 50% VO2 max. The other test was performed 15 min after continuous running at OBLA until volitional exhaustion. Following this high intensity exercise there was a significant reduction of Con at 60 degrees/s and a significant reduction of Ecc at both velocities. Percent strength losses after running exercise were significantly different between contraction types only at 180 degrees/s. We can conclude that the reduction in isokinetic peak torque of the knee extensors after a session of high intensity exhaustive running exercise at OBLA depends on the contraction type and angular velocity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aim. The aim of this pilot study was to compare strength performance and salivary cortisol levels response during a single strength session, and a strength session after 30 min of high-intensity aerobic exercise (concurrent condition).Methods. Saliva was collected from 7 male subjects, before and after all exercise bouts, and the maximum number of repetitions (MNR) and total volume (TV) in the different conditions assessed.Results. The MNR and TV were reduced in concurrent condition compared with control condition. Strength exercise in the concurrent condition induced higher salivary cortisol in relation to strength exercise or to and high-intensity aerobic exercise, separately.Conclusion. The different salivary cortisol profile in response to concurrent exercise reflects the faster reactivity of the hypothalamic-pituitary-adrenocortical system in this circumstance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Changes in lipid profile are considered a risk factor for cardiovascular disease (CVD), especially in postmenopausal woman who have been associated with age-related loss of muscle mass. The beneficial role of aerobic exercise in the prevention of CVD has been well documented. However, the effect of strength training has not been established. The purpose of this study was to determine the changes of lipoprotein levels after 12 weeks of different volumes of strength training and its correlation with strength and muscle volume in postmenopausal women. The participants were randomized into three groups: low volume (LVST; n = 12, 1 set) and high volume of strength training (HVST; n = 11, 3 sets), or control group (n = 12). Training groups performed 12 weeks of supervised strength exercises, 15 maximum repetitions, five times a week, 20 minutes for LVST and 40 minutes for HVST for each training session. Measurements included body composition, strength and muscle volume, as well as blood analysis (glucose, total cholesterol, triglycerides, low-density lipoprotein, and high-density lipoprotein) pre- and post-training. The HVST and LVST improved the one-repetition maximum knee extension strength (p < 0.001), maximal dynamic strength (p < 0.001), and muscle volume (p = 0.048). Post-training triglyceride was lower in HVST when compared to LVST and the control group (p = 0.047). Even though they present the same neuromuscular and morphological adaptations in postmenopausal women, the HVST is more effective than LVST in improving the lipid profile of postmenopausal woman, and can be considered as an ideal program of intervention to reverse changes in lipid metabolism commonly found in this group. Copyright (C) 2014, The Society of Chinese Scholars on Exercise Physiology and Fitness. Published by Elsevier (Singapore) Pte Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High amylose cross-linked to different degrees with sodium trimetaphosphate by varying base strength (2% or 4%) and contact time (0.5-4 h) was evaluated as non-compacted systems for sodium diclophenac controlled release. The physical properties and the performance of these products for sodium diclophenac controlled release from non-compacted systems were related to the structures generated at each cross-linking degree. For samples at 2% until 2 h the swelling ability, G' and eta* values increased with the cross-linking degree, because the longer polymer chains became progressively more entangled and linked. This increases water uptake and holding, favoring the swelling and resulting in systems with higher viscosities. Additionally, the increase of cross-linking degree should contribute for a more elastic structure. The shorter chains with more inter-linkages formed at higher cross-linking degrees (2%4h and 4%) make water caption and holding difficult, decreasing the swelling, viscosity and elasticity. For 2% samples, the longer drug release time exhibited for 2%4h sample indicates that the increase of swelling and viscosity contribute for a more sustained drug release, but the mesh size of the polymeric network seems to be determinant for the attachment of drug molecules. For the 4% samples, smaller meshes size should determine less sustained release of drug. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chromium electrodeposition is a technique for the production of functional coatings on engineering components. These coatings are extensively micro-cracked and present high level of hardness, resistance to corrosion and wear and low coefficient of friction. In this paper the shot peening influence on the fatigue strength of aluminum 7050-T7451 alloy chromium electroplated, was investigated.The shot peening process was carried out to create residual stresses using ceramic and glass shots. A hard chromium electroplated coating of 100 mu m thickness was performed on the base material and the shot peened base material surfaces. S-N curves were obtained in axial and bending fatigue tests and compared with the 7050-T7451 aluminum alloy. In order to study the influence of residual stresses on fatigue life, the behavior of compressive residual stress field was measured by an X-ray tensometry.An increase in the axial fatigue strength of 25% and 50% of ceramic and glass shots, respectively, was observed. The lower performance in fatigue life for ceramic-shot peening may be attributed to higher surface damage, as a consequence of the overpeening intensity performed. However, in bending fatigue the behavior was practically equivalent for both processes. Fracture surface analysis by scanning electron microscopy was used to observe crack origin sites from shot peened and chromium electroplated samples. (C) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, with higher demand for improved quality and corrosion resistance, recovered substrates have been extensively used. Consequently residual stresses originated from these coatings reduce the fatigue strength of a component. Due to this negative influence occasioned by corrosion resistance protective coatings, an effective process like shot peening must be considered to improve the fatigue strength. The shot peening treatment pushes the crack sources beneath the surface in most of medium and high cycle cases due to the compressive residual stress field (CRSF) induced. The aim of this study was to evaluate the influence on the fatigue life of anodic films grown on 7050-T7451 aluminium alloy by sulphuric acid anodizing, chromic acid anodizing and hard anodizing. The influence on the rotating and reverse bending fatigue strength of anodic films grown on the aluminium alloy is to degrade the stress life fatigue performance of the base material.A consistent gain in fatigue life in relation to the base material was obtained through the shot peening process in coated specimens, associated to a residual stress field compressive near the surface, useful to avoid fatigue crack nucleation and delay or even stop crack propagation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deposition of wear-resistant hard chromium plating leads to a decrease in the fatigue strength of the base material. Despite the effective protection against wear and corrosion, fatigue life and environmental requirements result in pressure to identify alternatives or to improve conventional chromium electroplating mechanical characteristics. An interesting, environmentally safer and cleaner alternative for the replacement of hard chronic plating is tungsten carbide thermal spray coating, applied by high velocity oxyfuel (HVOF) process.To improve the fatigue strength of aeronautical steel chromium electroplated, shot peening is a successfully used method. Multiple lacer systems of coatings are considered to have larger resistance to crack propagation in comparison with simple layer.The aim of this study was to analyze the effect of nickel underplate on the fatigue strength of hard chromium plated AISI 4340 steel in two mechanical conditions: HRc 39 and HRc 52.Rotating bending fatigue tests results indicate that the clectroless nickel plating underlayer is responsible for the increase in fatigue strength of AISI 4340 steel chromium electroplated. This behavior may be attributed to the largest toughness/ductility and compressive residual stresses which, probably, arrested or delayed the inicrocrack propagation from the hard chromium external layer. The compressive residual stress field (CRSF) induced by the electroplating process was determined by X-ray diffraction method. The evolution of fatigue strength compressive residual stress field CRSF and crack sources are discussed and analyzed by SEM. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Internal residual stresses significantly influence the fatigue strength of coated materials. It is well known that chromium plating is the most used electrodeposited coating for important industrial applications. However, pressure to identify alternatives or to improve the chromium electroplating process have increased in recent years, related to the reduction in fatigue strength of the base material and to environmental requirements. The high efficiency and fluoride free hard chromium electroplating there called accelerated) is an improvement to the conventional process. One environmentally safer and cleaner alternative to hard chromium plating is tungsten carbide thermal spray coating applied by the High Velocity Oxy-Fuel (HVOF) process. To increase the fatigue strength of chromium plated materials, coating thickness and microcracks density are important parameters to be controlled. Techniques as compressive residual stresses induced by shot peening and multilayers, are also used. The aim of this study was to analyse the effects on AISI 4340 steel, in the rotating bending fatigue behaviour, of the: tungsten carbide thermal spray coating applied by HP/HVOF process; chemical nickel underplate, and shot peening process applied before coating deposition, in comparison to hard chromium electroplatings. Rotating bending fatigue test results indicate better performance for the conventional hard chromium plating in relation to the accelerated hard chromium electroplating. Tungsten carbide thermal spray coating and accelerated hard chromium plate over nickel resulted in higher fatigue strength when compared to samples conventional or accelerated hard chromium plated. Shot peening showed to be an excellent alternative to increase fatigue strength of AISI 4340 steel hard chromium electroplated. (C) 2001 Elsevier B.V. Ltd. All rights reserved.