112 resultados para genetic trait


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study was conducted to examine the relationship among average annual productivity of the cow (PRODAM), yearling weight (YW), postweaning BW gain (PWG), scrotal circumference (SC), and stayability in the herd for at least 6 yr (STAY) of Nelore and composite beef cattle. Measurements were taken on animals born between 1980 and 2010 on 70 farms located in 7 Brazilian states. Estimates of heritability and genetic and environmental correlations were obtained by Bayesian approach with 5-trait animal models. Genetic trends were estimated by regressing means of estimated breeding values by year of birth. The heritability estimates were between 0.14 and 0.47. Estimates of genetic correlation among female traits (PRODAM and STAY) and growth traits ranged from-0.02 to 0.30. Estimates of genetic correlations ranged from 0.23 to 0.94 among growth traits indicating that selection for these traits could be successful in tropical breeding programs. Genetic correlations among all traits were favorable and simultaneous selection for growth, productivity, and stayability is therefore possible. Genetic correlation between PRODAM and STAY was 0.99 and 0.85 for Nelore and composite cattle, respectively. Therefore, PRODAM and STAY might be influenced by many of the same genes. The inclusion of PRODAM instead of STAY as a selection criterion seems to be more advantageous for tropical breeding programs because the generation interval required to obtain accurate estimates of genetic merit for PRODAM is shorter. Average annual genetic changes were greater in Nelore than in composite cattle. This was not unexpected because the breeding program of composite cattle included a large number of farms, different production environments, and genetic level of the herds and breeds. Thus, the selection process has become more difficult in this population. © 2013 American Society of Animal Science. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this study was to estimate genetic parameters for female mature weight (FMW), age at first calving (AFC), weight gain from birth to 120 days (WG_B_120), from 210 to 365 days (WG_210_365), rib eye area (REA), back fat thickness (BF), rump fat (RF) and body weight at scanning date (BWS) using single and multiple-trait animal models by the REML method from Nellore cattle data. The estimates of heritability ranged from 0.163±0.011 for WG_210_365 to 0.309±0.028 for RF using the single-trait model and from 0.163±0.010 for WG_210_365 to 0.382±0.025 for BWS using the multiple-trait model. The estimates of genetic correlations ranged from -0.35±0.08 between AFC with BF to 0.69±0.04 between WG_B_120 with BWS. Selection for weights gains, REA, and BWS can improve FMW. © 2013 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The major objective of this study was to estimate heritability and genetic correlations between milk yield (MY) and calving interval (CI) and lactation length (LL) in Murrah buffaloes using Bayesian inference. The database used belongs to the genetic improvement program of four buffalo herds from Brazil. To obtain the estimates of variance and covariance, bivariate analyses were performed with the Gibbs sampler, using the program MTGSAM. The heritability coefficient estimates were 0.28, 0.03 and 0.15 for MY, CI and LL, respectively. The genetic correlations between MY and LL was moderate (0.48). However, the genetic correlation between MY and CI showed large HPD regions (highest posterior density interval). Milk yield was the only trait with clear potential for genetic improvement by direct mass selection. The genetic correlation between MY and LL indicates that indirect selection using milk yield is a potentially beneficialstrategy.Theinterpretation of the estimated genetic correlation between MY and CI is difficult and could be spurious. ©2013 Sociedade Brasileira de Zootecnia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crambe is an important biofuel crop and its oil has unique traits such as high erucic acid content which can be used as industrial lubricant, corrosion inhibitor as well as ingredient in synthetic rubber manufacturing. Genetic diversity among 70 progenies of Crambe abyssinica Hochst selected from a population of FMS Brilhante cultivar was quantified by multivariate analysis for traits related to germination, thousand grain weight and oil content. There were significant differences among progenies for all traits studied. Estimation of genetic variance and heritability coefficients showed that the variability found in the progeny is more genetic than environmental which enables genetic gains with selection. Heritability coefficient varied from 68 to 79%, except for oil content and number of dead seedlings. Simple correlation analysis showed that germination and vigor were positively correlated, and thousand grain weight and oil content were not correlated with any of the seed traits. Based on multivariate analysis, the progenies could be grouped into 26 clusters. Clusters 1, 2 and 3 had the highest number of progeny with 7, 8 and 6 lineages, respectively. Clusters 21-26 had higher dissimilarity within the cluster with one in each progeny. The trait that most contributed to the cluster was the germination (36.2%) and less contributed was the number of seedlings killed (1.1%). The progenies indicate genetic diversity for seed traits and the selection of superior progenies is possible considering the studied traits. © 2013.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The continuous trait age at subsequent rebreeding (ASR) was evaluated using survival analysis in Nellore breed cows that conceived for the first time at approximately 14 months of age. This methodology was chosen because the restricted breeding season produces censored data. The dataset contained 2885 records of ASR (in days). Records of females that did not produce calves in the following year after being exposed to a sire were considered censored (48.3% of the total). The statistical model used was a Weibull mixed survival model, which included fixed effects of contemporary groups (CG) and period and a random effect of individual animal. The effect of contemporary groups on ASR was significant (P < 0.01). Heritabilities obtained for ASR were 0.03 and 0.04 in logarithmic and original scales, respectively. These results indicate that the genetic selection response for subsequent reproduction of 2-year-old Nellore breed females is not expected to be effective based on survival analysis. Furthermore, these results suggest that environmental improvement is fundamental to this important trait. It should be highlighted that an increase in the average date of birth can produce an adverse effect in the future, since this cannot be compensated by genetic improvement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A data set based on 50 studies including feed intake and utilization traits was used to perform a meta-analysis to obtain pooled estimates using the variance between studies of genetic parameters for average daily gain (ADG); residual feed intake (RFI); metabolic body weight (MBW); feed conversion ratio (FCR); and daily dry matter intake (DMI) in beef cattle. The total data set included 128 heritability and 122 genetic correlation estimates published in the literature from 1961 to 2012. The meta-analysis was performed using a random effects model where the restricted maximum likelihood estimator was used to evaluate variances among clusters. Also, a meta-analysis using the method of cluster analysis was used to group the heritability estimates. Two clusters were obtained for each trait by different variables. It was observed, for all traits, that the heterogeneity of variance was significant between clusters and studies for genetic correlation estimates. The pooled estimates, adding the variance between clusters, for direct heritability estimates for ADG, DMI, RFI, MBW and FCR were 0.32 +/- 0.04, 0.39 +/- 0.03, 0.31 +/- 0.02, 0.31 +/- 0.03 and 0.26 +/- 0.03, respectively. Pooled genetic correlation estimates ranged from -0.15 to 0.67 among ADG, DMI, RFI, MBW and FCR. These pooled estimates of genetic parameters could be used to solve genetic prediction equations in populations where data is insufficient for variance component estimation. Cluster analysis is recommended as a statistical procedure to combine results from different studies to account for heterogeneity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of the study was to estimate heritability for calving interval (CI) and age at first calving (AFC) and also calculate repeatability for CI in buffaloes using Bayesian inference. The Brazilian Buffaloes Genetic Improvement Program provided the database. Data consists on information from 628 females and four different herds, born between 1980 and 2003. In order to estimate the variance, univariate analyses were performed employing Gibbs sampler procedure included in the MTGSAM software. The model for CI included the random effects direct additive and permanent environment factors, and the fixed effects of contemporary groups and calving orders. The model for AFC included the direct additive random effect and contemporary groups as a fixed effect. The convergence diagnosis was obtained using Geweke that was implemented through the Bayesian Output Analysis package in R software. The estimated averages were 433.2 days and 36.7months for CI and AFC, respectively. The means, medians and modes for the calculated heritability coefficients were similar. The heritability coefficients were 0.10 and 0.42 for CI and AFC respectively, with a posteriori marginal density that follows a normal distribution for both traits. The repeatability for CI was 0.13. The low heritability estimated for CI indicates that the variation in this trait is, to a large extent, influenced by environmental factors such as herd management policies. The age at first calving has clear potential for yield improvement through direct selection in these animals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to estimate genetic, environmental and phenotypic correlation between birth weight (BW) and weight at 205 days age (W205), BW and weight at 365 days age (W365) and W205-W365, using Bayesian inference. The Brazilian Program for Genetic Improvement of Buffaloes provided the data that included 3,883 observations from Mediterranean breed buffaloes. With the purpose to estimate variance and covariance, bivariate analyses were performed using Gibbs sampler that is included in the MTGSAM software. The model for BW, W205 and W365 included additive direct and maternal genetic random effects, maternal environmental random effect and contemporary group as fixed effect. The convergence diagnosis was achieved using Geweke, a method that uses an algorithm implemented in R software through the package Bayesian Output Analysis. The calculated direct genetic correlations were 0.34 (BW-W205), 0.25 (BW-W365) and 0.74 (W205-W365). The environmental correlations were 0.12, 0.11 and 0.72 between BW-W205, BW-W365 and W205-W365, respectively. The phenotypic correlations were low for BW-W205 (0.01) and BW-W365 (0.04), differently than the obtained for W205-W365 with a value of 0.67. The results indicate that BW trait have low genetic, environmental and phenotypic association with the two others traits. The genetic correlation between W205 and W365 was high and suggests that the selection for weight at around 205 days could be beneficial to accelerate the genetic gain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of the study was to estimate heritability and repeatability for milk yield (MY) and lactation length (LL) in buffaloes using Bayesian inference. The Brazilian genetic improvement program of buffalo provided the data that included 628 females, from four herds, born between 1980 and 2003. In order to obtain the estimates of variance, univariate analyses were performed with the Gibbs sampler, using the MTGSAM software. The model for MY and LL included direct genetic additive and permanent environment as random effects, and contemporary groups, milking frequency and calving number as fixed effects. The convergence diagnosis was performed with the Geweke method using an algorithm implemented in R software through the package Bayesian Output Analysis. Average for milk yield and lactation length was 1,546.1 +/- 483.8 kg and 252.3 +/- 42.5 days, respectively. The heritability coefficients were 0.31 (mode), 0.35 (mean) and 0.34 (median) for MY and 0.11 (mode), 0.10 (mean) and 0.10 (median) for LL. The repeatability coefficient (mode) were 0.50 and 0.15 for MY and LL, respectively. Milk yield is the only trait with clear potential for genetic improvement by direct genetic selection. The repeatability for MY indicates that selection based on the first lactation could contribute for an improvement in this trait.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this study was to estimate genetic parameters for milk yield at 244 days and lactation length in graded buffalo cows at the El Cangre Cattle Genetic Enterprise. Data were gathered from 2575 lactations, 1377 buffalo cows, 37 milking units and between 2002-2009 calving years. It was employed the Restricted Maximum Likelihood method (REML) for estimating (co) variance components with multi trait model. Average of milk yield at 244 days and lactation length were 864 kg and 240 days, respectively. Heritability was 0.15 for milk yield and 0.13 for lactation length. Genetic correlation between these traits was 0.63. It was concluded that it is necessary to intensify selection and to increase control of the information of the genetic herds to obtain high precision in the estimates and therefore, obtain bigger genetic progress in of this species in our country.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Knowing the genetic parameters of productive and reproductive traits in milking buffaloes is essential for planning and implementing of a program genetic selection. In Brazil, this information is still scarce. The objective of this study was to verify the existence of genetic variability in milk yield of buffaloes and their constituents, and reproductive traits for the possibility of application of the selection. A total of 9,318 lactations records from 3,061 cows were used to estimate heritabilities for milk yield (MY), fat percentage (%F), protein percentage (%P), length of lactation (LL), age of first calving (AFC) and calving interval (CI) and the genetic correlations among traits MY, %F and %P. The (co) variance components were estimated using multiple-trait analysis by Bayesian inference method, applying an animal model, through Gibbs sampling. The model included the fixed effects of contemporary groups (herd-year and calving season), number of milking (2 levels), and age of cow at calving as (co) variable (quadratic and linear effect). The additive genetic, permanent environmental, and residual effects were included as random effects in the model. Estimated heritability values for MY, % F, % P, LL, AFC and CI were 0.24, 0.34, 0.40, 0.09, 0.16 and 0.05, respectively. The genetic correlation estimates among MY and % F, MY and % P and % F and % P were -0.29, -0.18 and 0.25, respectively. The production of milk and its constituents showed enough genetic variation to respond to a selection program. Negative estimates of genetic correlations between milk production and its components suggest that selection entails a reduction in the other.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bacterial artificial chromosomes (BAC) have been widely used for fluorescence in situ hybridization (FISH) mapping of chromosome landmarks in different organisms, including a few in teleosts. In this study, we used BAC-FISH to consolidate the previous genetic and cytogenetic maps of the turbot (Scophthalmus maximus), a commercially important pleuronectiform. The maps consisted of 24 linkage groups (LGs) but only 22 chromosomes. All turbot LGs were assigned to specific chromosomes using BAC probes obtained from a turbot 5x genomic BAC library. It consisted of 46,080 clones with inserts of at least 100 kb and < 5 % empty vectors. These BAC probes contained gene-derived or anonymous markers, most of them linked to quantitative trait loci (QTL) related to productive traits. BAC clones were mapped by FISH to unique marker-specific chromosomal positions, which showed a notable concordance with previous genetic mapping data. The two metacentric pairs were cytogenetically assigned to LG2 and LG16, and the nucleolar organizer region (NOR)-bearing pair was assigned to LG15. Double-color FISH assays enabled the consolidation of the turbot genetic map into 22 linkage groups by merging LG8 with LG18 and LG21 with LG24. In this work, a first-generation probe panel of BAC clones anchored to the turbot linkage and cytogenetical map was developed. It is a useful tool for chromosome traceability in turbot, but also relevant in the context of pleuronectiform karyotypes, which often show small hardly identifiable chromosomes. This panel will also be valuable for further integrative genomics of turbot within Pleuronectiformes and teleosts, especially for fine QTL mapping for aquaculture traits, comparative genomics, and whole-genome assembly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this study was to estimate variance components and genetic parameters for accumulated 305-day milk yield (MY305) over multiple ages, from 24 to 120 months of age, applying random regression (RRM), repeatability (REP) and multi-trait (MT) models. A total of 4472 lactation records from 1882 buffaloes of the Murrah breed were utilized. The contemporary group (herd-year-calving season) and number of milkings (two levels) were considered as fixed effects in all models. For REP and RRM, additive genetic, permanent environmental and residual effects were included as random effects. MT considered the same random effects as did REP and RRM with the exception of permanent environmental effect. Residual variances were modeled by a step function with 1, 4, and 6 classes. The heritabilities estimated with RRM increased with age, ranging from 0.19 to 0.34, and were slightly higher than that obtained with the REP model. For the MT model, heritability estimates ranged from 0.20 (37 months of age) to 0.32 (94 months of age). The genetic correlation estimates for MY305 obtained by RRM (L23.res4) and MT models were very similar, and varied from 0.77 to 0.99 and from 0.77 to 0.99, respectively. The rank correlation between breeding values for MY305 at different ages predicted by REP, MT, and RRM were high. It seems that a linear and quadratic Legendre polynomial to model the additive genetic and animal permanent environmental effects, respectively, may be sufficient to explain more parsimoniously the changes in MY305 genetic variation with age.