193 resultados para gauge field theories


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using the operator formalism, we obtain the bosonic representation for the free fermion field satisfying an equation of motion with higher-order derivatives. Then, we consider the operator solution of a generalized Schwinger model with higher-derivative coupling. Since the increasing of the derivative order implies the introduction of an equivalent number of extra fermionic degrees of freedom, the mass acquired by the gauge field is bigger than the one for the standard two-dimensional QED. An analysis of the problem from the functional integration point of view corroborates the findings of canonical quantization, and corrects certain results previously announced in the literature on the basis of Fujikawa's technique.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The use of master actions to prove duality at quantum level becomes cumbersome if one of the dual fields interacts nonlinearly with other fields. This is the case of the theory considered here consisting of U(1) scalar fields coupled to a self-dual field through a linear and a quadratic term in the self-dual field. Integrating perturbatively over the scalar fields and deriving effective actions for the self-dual and the gauge field we are able to consistently neglect awkward extra terms generated via master action and establish quantum duality up to cubic terms in the coupling constant. The duality holds for the partition function and some correlation functions. The absence of ghosts imposes restrictions on the coupling with the scalar fields.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study the 1/N expansion of field theories in the stochastic quantization method of Parisi and Wu using the supersymmetric functional approach. This formulation provides a systematic procedure to implement the 1/N expansion which resembles the ones used in the equilibrium. The 1/N perturbation theory for the nonlinear sigma-model in two dimensions is worked out as an example.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Here we address the problem of bosonizing massive fermions without making expansions in the fermion masses in both massive QED(2) and QED(3) with N fermion flavors including also a Thirring coupling. We start from two-point correlators involving the U(1) fermionic current and the gauge field. From the tensor structure of those correlators we prove that the U(1) current must be identically conserved (topological) in the corresponding bosonized theory in both D=2 and D=3 dimensions. We find an effective generating functional in terms of bosonic fields which reproduces these two-point correlators and from that we obtain a map of the Lagrangian density (ψ) over bar (r)(ipartial derivative-m)psi(r) into a bosonic one in both dimensions. This map is nonlocal but it is independent of the electromagnetic and Thirring couplings, at least in the quadratic approximation for the fermionic determinant.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study a new mechanism for the electromagnetic gauging of chiral bosons showing that new possibilities emerge for the interacting theory of chiral scalars. We introduce a chirally coupled gauge field necessary to mod out the degree of freedom that obstructs gauge invariance in a system of two opposite chiral bosons soldering them together.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We call attention to a series of mistakes in a paper by S. Nam recently published in this journal (J. High Energy Phys. 10 (2000) 044).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study an exactly solvable two-dimensional model which mimics the basic features of the standard model. This model combines chiral coupling with an infrared behavior which resembles low energy QCD. This is done by adding a Podolsky higher-order derivative term in the gauge field to the Lagrangian of the usual chiral Schwinger model. We adopt a finite temperature regularization procedure in order to calculate the non-trivial fermionic Jacobian and obtain the photon and fermion propagators, first at zero temperature and then at finite temperature in the imaginary and real time formalisms. Both singular and non-singular cases, corresponding to the choice of the regularization parameter, are treated. In the nonsingular case there is a tachyonic mode as usual in a higher order derivative theory, however in the singular case there is no tachyonic excitation in the spectrum.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

From spinor and scalar (2 + 1)-dimensional QED effective actions at finite temperature and density in a constant magnetic field background, we calculate the corresponding virial coefficients for particles in the lowest Landau level. These coefficients depend on a parameter theta related to the time-component of the gauge field, which plays an essential role for large gauge invariance. The variation of the parameter theta might lead to an interpolation between fermionic and bosonic virial coefficients, although these coefficients are singular for theta = pi/2.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We quantize a generalized version of the Schwinger model, where the two chiral sectors couples with different strengths to the U(1) gauge field. Starting from a theory which includes a generalized Wess-Zumino term, we obtain the equal time commutation relation for physical fields, both the singular and non-singular cases are considered. The photon propagators are also computed in their gauge dependent and invariant versions. © 1995 Springer-Verlag.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The standard eleven-dimensional supergravity action depends on a three-form gauge field and does not allow direct coupling to five-branes. Using previously developed methods, we construct a covariant eleven-dimensional supergravity action depending on a three-form and six-form gauge field in a duality-symmetric manner. This action is coupled to both the M-theory two-brane and five-brane, and corresponding equations of motion are obtained. Consistent coupling relates D = 11 duality properties with self-duality properties of the M5-brane. From this duality-symmetric formulation, one derives an action describing coupling of the M-branes to standard D = 11 supergravity. © 1998 Elsevier Science B.V.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Both the parity-breaking and parity-invariant parts of the effective action for the gauge field in QED 3 with massive fermions at finite temperature are obtained exactly. This is feasible because we use a particular configuration of the background gauge field, namely a constant magnetic field and a time-dependent time component of the background gauge field. Our results allow us to compute exactly physically interesting quantities such as the induced charge density and fermion condensate whose dependence on the temperature, fermion mass and gauge field is discussed. ©1999 The American Physical Society.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Perturbative quantum gauge field theory as seen within the perspective of physical gauge choices such as the light-cone gauge entails the emergence of troublesome poles of the type (k · n)-α in the Feynman integrals. These come from the boson field propagator, where α = 1, 2, ⋯ and nμ is the external arbitrary four-vector that defines the gauge proper. This becomes an additional hurdle in the computation of Feynman diagrams, since any graph containing internal boson lines will inevitably produce integrands with denominators bearing the characteristic gauge-fixing factor. How one deals with them has been the subject of research over decades, and several prescriptions have been suggested and tried in the course of time, with failures and successes. However, a more recent development at this fronteer which applies the negative dimensional technique to compute light-cone Feynman integrals shows that we can altogether dispense with prescriptions to perform the calculations. An additional bonus comes to us attached to this new technique, in that not only it renders the light-cone prescriptionless but, by the very nature of it, it can also dispense with decomposition formulas or partial fractioning tricks used in the standard approach to separate pole products of the type (k · n)-α[(k - p) · n]-β (β = 1, 2, ⋯). In this work we demonstrate how all this can be done.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider a scalar field theory on AdS in both minimally and non-minimally coupled cases. We show that there exist constraints which arise in the quantization of the scalar field theory on AdS which cannot be reproduced through the usual AdS/CFT prescription. We argue that the usual energy, defined through the stress-energy tensor, is not the natural one to be considered in the context of the AdS/CFT correspondence. We analyze a new definition of the energy which makes use of the Noether current corresponding to time displacements in global coordinates. We compute the new energy for Dirichlet, Neumann and mixed boundary conditions on the scalar field and for both the minimally and non-minimally coupled cases. Then, we perform the quantization of the scalar field theory on AdS showing that, for 'regular' and 'irregular' modes, the new energy is conserved, positive and finite. We show that the quantization gives rise, in a natural way, to a generalized AdS/CFT prescription which maps to the boundary all the information contained in the bulk. In particular, we show that the divergent local terms of the on-shell action contain information about the Legendre transformed generating functional, and that the new constraints for which the irregular modes propagate in the bulk are the same constraints for which such divergent local terms cancel out. In this situation, the addition of counterterms is not required. We also show that there exist particular cases for which the unitarity bound is reached, and the conformai dimension becomes independent of the effective mass. This phenomenon has no bulk counterpart.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The soliton spectrum (massive and massless) of a family of integrable models with local U(1) and U(1) ⊗U(1) symmetries is studied. These models represent relevant integrable deformations of SL(2,ℝ) ⊗U(1) n-1-WZW and SL(2,ℝ) ⊗ SL(2,ℝ) ⊗U(1) n-2-WZW models. Their massless solitons appear as specific topological solutions of the U(1)(or U(1) ⊗ U(1)-) CFTs. The nonconformal analog of the GKO-coset formula is derived and used in the construction of the composite massive solitons of the ungauged integrable models. © SISSA/ISAS 2002.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We use ideas on integrability in higher dimensions to define Lorentz invariant field theories with an infinite number of local conserved currents. The models considered have a two-dimensional target space. Requiring the existence of lagrangean and the stability of static solutions singles out a class of models which have an additional conformal symmetry. That is used to explain the existence of an ansatz leading to solutions with non-trivial Hopf charges. © SISSA/ISAS 2002.