103 resultados para fluorescent peptides
Resumo:
This paper presents an investigation concerning the use of fundamental approximation analysis and a new lamp model for the prediction of the voltage over electrodes' filaments during dimming operation. The lamp model employed in this paper is based on equivalent resistances, which represent the electrodes' filaments and the gas column of a F32T8 lamp. Experimental results are presented in this paper, indicating the validity of the proposed analysis and confirming its potential to serve as an effective tool for the design of dimming electronic ballasts. © 2005 IEEE.
Resumo:
The Pacific white shrimp, Litopenaeus vannamei (Penaeidae), represents about 95% of all Brazilian shrimp production. The Brazilian L. vannamei foundation broodstock was made up of specimens collected from different American Pacific sites, but little information was collected on the genetic structure of the broodstock. We used the fluorescence amplified fragment length polymorphism (fAFLP) method to study the genetic diversity of L. vannamei broodstock lines 03CMF1 and 03CBF1 originally produced by breeder-shrimps imported mainly from Panama and Ecuador, although wild individuals from other localities may also have been used in producing these two lines. Our results showed a total of 93 polymorphic bands ranging from 50 to 500 bp, the mean Nei's genetic diversity calculated for the total sample was 13.4% and identity and genetic distance analyses indicated high genetic homogeneity within and between both the broodstock lineages studied which suggests that they had similar genetic structure. These results may represent an important tool for the appropriate management of L. vannamei broodstocks. Copyright by the Brazilian Society of Genetics.
Resumo:
This paper presents a new model for the representation of the electrodes filaments of fluorescent lamps, during their preheating, and an analysis capable to guide the design of the preheating process in electronic ballasts. The main improvement obtained with the lamp model is the accurate theoretical reproduction of the behavior of the Rh/Rc ratio during the preheating process. In addition, using the proposed methodology based on the lamp model, it is possible to set a proper preheating process to the electrodes filaments, without the necessity of exhaustive empirical adjustments in the prototype, reducing time and costs involved in the design of ballasts with preheating capabilities. © 2006 IEEE.
Resumo:
A comparative study of holocentric chromosomes in the triatomine species Panstrongylus megistus, Rhodnius pallescens and Triatoma infestans was carried out in order to characterize heterochromatin, rDNA active sites and nucleolar proteins. Cytological preparations of seminiferous tubules were stained by silver impregnation, C banding, fluorochromes CMA 3/DA and DAPI/DA, and fluorescent in situ hybridization (FISH) with Drosophila melanogaster 28S rDNA probe. Our results showed interesting aspects of the organization of chromatin and chromosomes in the meiotic cells of these insects. In R. pallescens, sex chromosomes (X, Y) were distinct from autosomes, when submitted to silver impregnation, C banding, CMA 3 staining, and FISH, confirming that these chromosomes bear nucleolar organizer regions (NORs). In P. megistus, two of the three sex chromosomes were CMA 3/DAPI-; at early meiotic prophase and at diakinesis, silver impregnation corresponded with FISH signals, indicating that in this species, two chromosomes (probably a sex chromosome and an autosome) bear NORs. In T. infestans, silver nitrate and FISH also stained corresponding areas on meiotic chromosomes. Our data suggest that in triatomines, in general, the number and location of NORs are species-specific. These regions may be considered important chromosome markers for comparative studies to improve the understanding of evolutionary mechanisms in these hematophagous insects. ©FUNPEC-RP.
Resumo:
This paper reports the purification and biochemical/pharmacological characterization of two myotoxic phospholipases A2 (PLA2s) from Bothrops brazili venom, a native snake from Brazil. Both myotoxins (MTX-I and II) were purified by a single chromatographic step on a CM-Sepharose ion-exchange column up to a high purity level, showing Mr ∼ 14,000 for the monomer and 28,000 Da for the dimer. The N-terminal and internal peptide amino acid sequences showed similarity with other myotoxic PLA2s from snake venoms, MTX-I belonging to Asp49 PLA2 class, enzymatically active, and MTX-II to Lys49 PLA2s, catalytically inactive. Treatment of MTX-I with BPB and EDTA reduced drastically its PLA2 and anticoagulant activities, corroborating the importance of residue His48 and Ca2+ ions for the enzymatic catalysis. Both PLA2s induced myotoxic activity and dose-time dependent edema similar to other isolated snake venom toxins from Bothrops and Crotalus genus. The results also demonstrated that MTXs and cationic synthetic peptides derived from their 115-129 C-terminal region displayed cytotoxic activity on human T-cell leukemia (JURKAT) lines and microbicidal effects against Escherichia coli, Candida albicans and Leishmania sp. Thus, these PLA2 proteins and C-terminal synthetic peptides present multifunctional properties that might be of interest in the development of therapeutic strategies against parasites, bacteria and cancer. © 2008 Elsevier Inc. All rights reserved.
Resumo:
Four novel peptides were isolated from the venoms of the solitary eumenine wasps Eumenes rubrofemoratus and Eumenes fraterculus. Their sequences were determined by MALDI-TOF/TOF (matrix assisted laser desorption/ionization time-of-flight mass spectrometry) analysis, Edman degradation and solid-phase synthesis. Two of them, eumenitin-R (LNLKGLIKKVASLLN) and eumenitin-F (LNLKGLFKKVASLLT), are highly homologous to eumenitin, an antimicrobial peptide from a solitary eumenine wasp, whereas the other two, EMP-ER (FDIMGLIKKVAGAL-NH 2) and EMP-EF (FDVMGIIKKIAGAL-NH 2), are similar to eumenine mastoparan-AF (EMP-AF), a mast cell degranulating peptide from a solitary eumenine wasp. These sequences have the characteristic features of linear cationic cytolytic peptides; rich in hydrophobic and basic amino acids with no disulfide bond, and accordingly, they can be predicted to adopt an amphipathic α-helix secondary structure. In fact, the CD (circular dichroism) spectra of these peptides showed significant α-helical conformation content in the presence of TFE (trifluoroethanol), SDS (sodium dodecylsulfate) and asolectin vesicles. In the biological evaluation, all the peptides exhibited a significant broad-spectrum antimicrobial activity, and moderate mast cell degranulation and leishmanicidal activities, but showed virtually no hemolytic activity. © 2011 Elsevier Ltd.
Resumo:
When searching for prospective novel peptides, it is difficult to determine the biological activity of a peptide based only on its sequence. The trial and error approach is generally laborious, expensive and time consuming due to the large number of different experimental setups required to cover a reasonable number of biological assays. To simulate a virtual model for Hymenoptera insects, 166 peptides were selected from the venoms and hemolymphs of wasps, bees and ants and applied to a mathematical model of multivariate analysis, with nine different chemometric components: GRAVY, aliphaticity index, number of disulfide bonds, total residues, net charge, pI value, Boman index, percentage of alpha helix, and flexibility prediction. Principal component analysis (PCA) with non-linear iterative projections by alternating least-squares (NIPALS) algorithm was performed, without including any information about the biological activity of the peptides. This analysis permitted the grouping of peptides in a way that strongly correlated to the biological function of the peptides. Six different groupings were observed, which seemed to correspond to the following groups: chemotactic peptides, mastoparans, tachykinins, kinins, antibiotic peptides, and a group of long peptides with one or two disulfide bonds and with biological activities that are not yet clearly defined. The partial overlap between the mastoparans group and the chemotactic peptides, tachykinins, kinins and antibiotic peptides in the PCA score plot may be used to explain the frequent reports in the literature about the multifunctionality of some of these peptides. The mathematical model used in the present investigation can be used to predict the biological activities of novel peptides in this system, and it may also be easily applied to other biological systems. © 2011 Elsevier Inc.
Resumo:
Many neuropsychiatric conditions have a common set of neurological substrates associated with the integration of sensorimotor processing. The teneurins are a recently described family of proteins that play a significant role in visual and auditory development. Encoded on the terminal exon of the teneurin genes is a family of bioactive peptides, termed teneurin C-terminal associated peptides (TCAP), which regulate mood-disorder associated behaviors. Thus, the teneurin-TCAP system could represent a novel neurological system underlying the origins of a number of complex neuropsychiatric conditions. However, it is not known if TCAP-1 exerts its effects as part of a direct teneurin function, whereby TCAP represents a functional region of the larger teneurin protein, or if it has an independent role, either as a splice variant or post-translational proteolytic cleavage product of teneurin. In this study, we show that TCAP-1 can be transcribed as a smaller mRNA transcript. After translation, further processing yields a smaller 15. kDa protein containing the TCAP-1 region. In the mouse hippocampus, immunoreactive (ir) TCAP-1 is exclusively localized to the pyramidal layers of the CA1, CA2 and CA3 regions. Although the localization of TCAP and teneurin in hippocampal regions is similar, they are distinct within the cell as most ir-teneurin is found at the plasma membrane, whereas ir-TCAP-1 is predominantly found in the cytosol. Moreover, in mouse embryonic hippocampal cell culture, FITC-labeled TCAP-1 binds to the plasma membrane and is taken up into the cytosol via dynamin-dependent caveolae-mediated endocytosis. Our data provides novel evidence that TCAP-1 is structurally and functionally distinct from the larger teneurins. © 2012.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Biofísica Molecular - IBILCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Bacterial cellulose is a highly hydrated pellicle made up of a random assembly of ribbon shaped fibers less than 5 nm wide. The unique properties provided by the nanometric structure have led to a number of diagnostic biological probes, display devices due to their unique size-dependent medical applications. Bacterial cellulose matrix extracellular is a novel biotechnology and unique medicine indicated for ultimate chronic wound treatment management, drug delivery, tissue engineering, skin cancer and offers an actual and effective solution to a serious medical and social problem and to promote rapid healing in lesions caused by Diabetic burns, ulcers of the lower limbs or any other circumstance in which there's epidermal or dermal loss. In this work, it is reported novel antimicrobial peptides (AMPs) bacterial cellulose/polyhexanide biguanide (PHMB) which are produced by symbioses culture between polyhexanide biguanide and green tea culture medium resulting in the pure 3-D structure consisting of an ultra-fine network of novel biocellulose/PHMB nanofibres matrix (2-8 nm), highly hydrated (99% in weight), and with higher molecular weight, full biocompatibility.