110 resultados para fine grinding
Resumo:
The conventional, grinding methods in some cases are not very efficient because the arising of thermal damages in the pieces is very common. Optimization methods of cutting fluid application in the grinding zone are essential to prevent thermal problems from interaction of the wheel grains with the workpiece. surface. The optimization can happen through the correct selection of the cut parameters and development of devices that eliminate air layer effects generated around the grinding wheel. This article will collaborate with the development of an experimentation methodology which allows evaluating, comparatively, the performance of the deflectors in the cutting region to minimize the air layer effect of the high speed of the grinding wheel. The air layers make the cutting fluid jet to dissipate in the machine. An optimized nozzle was used in order to compare the results with the conventional method (without baffles or deflectors) of cutting fluid application. The results showed the high eficciency of the deflectors or baffles in the finish results. Copyright © 2006 by ABCM.
Resumo:
The main purpose of this work is the development of computational tools in order to assist the on-line automatic detection of burn in the surface grinding process. Most of the parameters currently employed in the burning recognition (DPO, FKS, DPKS, DIFP, among others) do not incorporate routines for automatic selection of the grinding passes, therefore, requiring the user's interference for the choice of the active region. Several methods were employed in the passes extraction; however, those with the best results are presented in this article. Tests carried out in a surface-grinding machine have shown the success of the algorithms developed for pass extraction. Copyright © 2007 by ABCM.
Resumo:
Several systems are currently tested in order to obtain a feasible and safe method for automation and control of grinding process. This work aims to predict the surface roughness of the parts of SAE 1020 steel ground in a surface grinding machine. Acoustic emission and electrical power signals were acquired by a commercial data acquisition system. The former from a fixed sensor placed near the workpiece and the latter from the electric induction motor that drives the grinding wheel. Both signals were digitally processed through known statistics, which with the depth of cut composed three data sets implemented to the artificial neural networks. The neural network through its mathematical logical system interpreted the signals and successful predicted the workpiece roughness. The results from the neural networks were compared to the roughness values taken from the worpieces, showing high efficiency and applicability on monitoring and controlling the grinding process. Also, a comparison among the three data sets was carried out.
Resumo:
Grinding - the final machining process of a workpiece - requires large amounts of cutting fluids for the lubrication, cooling and removal of chips. These fluids are highly aggressive to the environment. With the technological advances of recent years, the worldwide trend is to produce increasingly sophisticated components with very strict geometric and dimensional tolerances, good surface finish, at low costs, and particularly without damaging the environment. The latter requirement can be achieved by recycling cutting fluids, which is a costly solution, or by drastically reducing the amount of cutting fluids employed in the grinding process. This alternative was investigated here by varying the plunge velocity in the plunge cylindrical grinding of ABNT D6 steel, rationalizing the application of two cutting fluids and using a superabrasive CBN (cubic boron nitride) grinding wheel with vitrified binder to evaluate the output parameters of tangential cutting force, acoustic emission, roughness, roundness, tool wear, residual stress and surface integrity, using scanning electron microscopy (SEM) to examine the test specimens. The performance of the cutting fluid, grinding wheel and plunge velocity were analyzed to identify the best machining conditions which allowed for a reduction of the cutting fluid volume, reducing the machining time without impairing the geometric and dimensional parameters, and the surface finish and integrity of the machined components.
Resumo:
This paper by R. E. Catai, E. C. Bianchi, P. R de Águia and M. C. Alves reports on the results of an analysis made of roundness errors, residual stresses, and SEM micrographs of VC131 steel. The analysis involved workpieces ground with two types of cutting fluid: synthetic cutting fluid and emulsive oil. In this study, the cutting parameters were kept constant while the type of cutting fluid was varied. The amount of cutting fluid injected in the process was also varied, aiming to identify the ideal amount required to obtain good results without causing structural damage to the workpiece. The SEM analyses of roundness errors and residual stresses revealed that, of the two cutting fluids, emulsive oil provided better tensions due to its greater lubricating power.
Resumo:
This work was based on a methodology of development and experimentation, and involved monitoring the dressing operation by processing the acoustic emission and electric power signals to detect the optimal dressing moment. Dressing tests were performed in a surface grinding machine with an aluminium grinding wheel. Dressing analysis software was developed and used to process the signals collected earlier in order to analyse not only the dressing parameters but also the software's ability to indicate the instant when the dressing operation could be concluded. Parameters used in the study of burn in grinding were implemented in order to ascertain if they would also prove efficient in monitoring dressing. A comparative study revealed that some parameters are capable of monitoring the dressing operation. It was possible to verify the parameters effectiveness that today are utilised in burning to monitor dressing as well as to create new parameters for monitoring this operation. Copyright © 2009, Inderscience Publishers.
Resumo:
The CMS experiment uses self-triggering arrays of drift tubes in the barrel muon trigger to perform the identification of the correct bunch crossing. The identification is unique only if the trigger chain is correctly synchronized. In this paper, the synchronization performed during an extended cosmic ray run is described and the results are reported. The random arrival time of cosmic ray muons allowed several synchronization aspects to be studied and a simple method for the fine synchronization of the Drift Tube Local Trigger at LHC to be developed. © 2010 IOP Publishing Ltd and SISSA.
Resumo:
This paper introduces a methodology for predicting the surface roughness of advanced ceramics using Adaptive Neuro-Fuzzy Inference System (ANFIS). To this end, a grinding machine was used, equipped with an acoustic emission sensor and a power transducer connected to the electric motor rotating the diamond grinding wheel. The alumina workpieces used in this work were pressed and sintered into rectangular bars. Acoustic emission and cutting power signals were collected during the tests and digitally processed to calculate the mean, standard deviation, and two other statistical data. These statistics, as well the root mean square of the acoustic emission and cutting power signals were used as input data for ANFIS. The output values of surface roughness (measured during the tests) were implemented for training and validation of the model. The results indicated that an ANFIS network is an excellent tool when applied to predict the surface roughness of ceramic workpieces in the grinding process.
Mammary benign neoplasm diagnosed by fine needle aspiration biopsy in a guinea pig (Cavia porcellus)
Resumo:
Cytology is a well established research technique in human and veterinary medicine, but it is rarely used in small rodents. Spontaneous tumors are relatively uncommon in guinea pigs and those described in literature include a variety of organs like skin and subcutis, respiratory and reproductive tract, endocrine and hematopoietic system, and mammary gland. The objective of this article was to describe the use of the fine needle aspiration biopsy technique (FNAB) on evaluation of a mammary neoplasm in a guinea pig and describe the main cytological findings for the first time in literature.
Resumo:
This study aimed to compare and characterize the fine, sensory and perceptive function performance and handwriting quality between students with learning difficulties and students with good academic performance. Methods: This study comprised 192 students from 2nd to 4th grades, both genders, whose ages ranged from 7 to 11 years old. The students were distributed into: GI, GII, GIII and GIV, comprising 96 students with learning difficulties, and groups GV, GVI, GVII, GVIII comprising 96 students with good academic performance. The students were submitted to evaluation of fine motor, sensorial and perception functions and handwriting evaluation under dictation. Results: The results showed that the students with learning difficulties, from 1st to 3rd grade, had lower performance on tests of fine motor, sensory and perceptive function, when compared to the students with good academic performance in the same grade; the students from 4th grade, both groups, did not show changes on fine motor, sensory and perceptive function; and only the students of GII showed dysgraphia. Conclusions: the results presented in this study suggest that the qualitative aspects of fine motor, sensory and perceptive skills reflect the integrity and maturity of central nervous system and can probably play an important role in early diagnosis of development disorders and consequently prevent academic disorders such as handwriting performance.
Resumo:
Aims: To evaluate the reliability of fine needle aspirate cell blocks in the assessment of oestrogen receptor (ER), progesterone receptor (PR) and HER-2/neu proteins by immunohistochemistry in comparison with surgical specimens. Materials and methods: This is a retrospective study of 62 cases of breast carcinoma diagnosed by fine needle aspiration cytology (FNAC) and confirmed using the surgical specimen. Immunohistochemical tests were performed to assess the presence of oestrogen receptor (ER), progesterone receptor (PR) and HER-2/neu proteins in cell blocks and the corresponding surgical specimens. The cell block method used alcohol prior to formalin fixation. Cases with 10% or more stained cells were considered positive for ER and PR. Positivity for HER-2/neu was assessed on a scale of 0-3+. The criterion for positivity was a score of 3+. Results: Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy of the cell blocks in the investigation of ER, PR and HER-2/neu protein (3+) were (%): ER, 92.7, 85.7, 92.7, 85.7 and 90.3; PR, 92.7, 94.7, 97.4, 87.0 and 93.5; HER-2/neu, 70.0, 100.0, 100.0, 94.5 and 95.2. Discrepancies were seen in cell blocks in the 1+ and 2+ HER-2/neu staining scores: two of 12 cases scoring 2+ and one case of 26 scoring 1+ on cell blocks scored 3+ on surgical specimens. The correlation index between cell block and corresponding surgical specimen varied from 90% to 94%. Conclusion: Cell blocks provide a useful method of assessing ER, PR and HER-2/neu, mainly for inoperable and recurrent cases, but consideration should be given to carrying out FISH analysis on 1+ as well as 2+ HER-2/neu results. © 2012 Blackwell Publishing Ltd.
Resumo:
The consequences of diversity on belowground processes are still poorly known in tropical forests. The distributions of very fine roots (diameter <1 mm) and fine roots (diameter <3 mm) were studied in a randomized block design close to the harvest age of fast-growing plantations. A replacement series was set up in Brazil with mono-specific Eucalyptus grandis (100E) and Acacia mangium (100A) stands and a mixture with the same stocking density and 50 % of each species (50A:50E). The total fine root (FR) biomass down to a depth of 2 m was about 27 % higher in 50A:50E than in 100A and 100E. Fine root over-yielding in 50A:50E resulted from a 72 % rise in E. grandis fine root biomass per tree relative to 100E, whereas A. mangium FR biomass per tree was 17 % lower than in 100A. Mixing A. mangium with E. grandis trees led to a drop in A. mangium FR biomass in the upper 50 cm of soil relative to 100A, partially balanced by a rise in deep soil layers. Our results highlight similarities in the effects of directional resources on leaf and FR distributions in the mixture, with A. mangium leaves below the E. grandis canopy and a low density of A. mangium fine roots in the resource-rich soil layers relative to monospecific stands. The vertical segregation of resource-absorbing organs did not lead to niche complementarity expected to increase the total biomass production. © 2012 Springer-Verlag Berlin Heidelberg.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Geologia Regional - IGCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)