143 resultados para density function theory
Resumo:
Possible molecular mechanisms of the gas-phase ion/molecule reaction of VO2+ in its lowest singlet and triplet states ((1)A(1)/(3)A '') with propyne have been investigated theoretically by density functional theory (DFT) methods. The geometries, energetic values, and bonding features of all stationary and intersystem crossing points involved in the five different reaction pathways (paths 1-5), in both high-spin (triplet) and low-spin (singlet) surfaces, are reported and analyzed. The oxidation reaction starts by a hydrogen transfer from propyne molecule to the vanadyl complex, followed by oxygen migration to the hydrocarbon moiety. A hydride transfer process to the vanadium atom opens four different reaction courses, paths 1-4, while path 5 arises from a hydrogen transfer process to the hydroxyl group. Five crossing points between high- and low-spin states are found: one of them takes place before the first branching point, while the others occur along path 1. Four different exit channels are found: elimination of hydrogen molecule to yield propynaldehyde and VO+ ((1)Sigma/(3)Sigma); formation of propynaldehyde and the moiety V-(OH2)(+); and two elimination processes of water molecule to yield cationic products, Prod-fc(+) and Prod-dc(+) where the vanadium atom adopts a four- and di-coordinate structure, respectively.
Resumo:
In this work, we studied the photocatalytic and the structural aspects of silicon wafers doped with Au and Cu submitted to thermal treatment. The materials were obtained by deposition of metals on Si using the sputtering method followed by fast heating method. The photocatalyst materials were characterized by synchrotron-grazing incidence X-ray fluorescence, ultraviolet-visible spectroscopy, X-ray diffraction, and assays of H(2)O(2) degradation. The doping process decreases the optical band gap of materials and the doping with Au causes structural changes. The best photocatalytic activity was found for thermally treated material doped with Au. Theoretical calculations at density functional theory level are in agreement with the experimental data.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We propose new circuits for the implementation of Radial Basis Functions such as Gaussian and Gaussian-like functions. These RBFs are obtained by the subtraction of two differential pair output currents in a folded cascode configuration. We also propose a multidimensional version based on the unidimensional circuits. SPICE simulation results indicate good functionality. These circuits are intended to be applied in the implementation of radial basis function networks. One possible application of these networks is transducer signal conditioning in aircraft and spacecraft vehicles onboard telemetry systems. Copyright 2008 ACM.
Resumo:
The evolution of the velocity of the particles with respect to the circular orbits of satellites that are around the Earth that the particles will cross, suggests a range of possible velocities of impact as a function of the altitude of the satellite. A study made from those results show that the maximum relative velocities occur at the semi-latus rectum, independent of the initial semi-major axis of the particle. Considering both the solar radiation pressure and the oblateness of the Earth, it is visible that a precession in the orbit occurs and there is also a variation in the eccentricity of the particle as a function of its orbital region and its size. This is important information, because the damage caused in a spacecraft depends on the impact velocity.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this paper we proposed a new two-parameters lifetime distribution with increasing failure rate. The new distribution arises on a latent complementary risk problem base. The properties of the proposed distribution are discussed, including a formal proof of its probability density function and explicit algebraic formulae for its reliability and failure rate functions, quantiles and moments, including the mean and variance. A simple EM-type algorithm for iteratively computing maximum likelihood estimates is presented. The Fisher information matrix is derived analytically in order to obtaining the asymptotic covariance matrix. The methodology is illustrated on a real data set. © 2010 Elsevier B.V. All rights reserved.
Resumo:
We investigate the effect that the temperature dependence of the crystal structure of a two-dimensional organic charge-transfer salt has on the low-energy Hamiltonian representation of the electronic structure. For that, we determine the crystal structure of κ-(BEDT-TTF) 2Cu 2(CN) 3 for a series of temperatures between T=5 and 300 K by single crystal X-ray diffraction and analyze the evolution of the electronic structure with temperature by using density functional theory and tight binding methods. We find a considerable temperature dependence of the corresponding triangular lattice Hubbard Hamiltonian parameters. We conclude that even in the absence of a change of symmetry, the temperature dependence of quantities like frustration and interaction strength can be significant and should be taken into account. © 2012 American Physical Society.
Resumo:
Doping tin dioxide (SnO2) with pentavalent Sb5+ ions leads to an enhancement in the electrical conductivity of this material, because Sb5+ substitutes Sn4+ in the matrix, promoting an electronic density increase in the conduction band, due to the donor-like nature of the doping atom. Results of computational simulation, based on the Density Functional Theory (DFT), of SnO2:4%Sb and SnO2:8%Sb show that the bandgap magnitude is strongly affected by the doping concentration, because the energy value found for 4 at%Sb and 8 at%Sb was 3.27 eV and 3.13 eV, respectively, whereas the well known value for undoped SnO2 is about 3.6 eV. Sb-doped SnO2 thin films were obtained by the sol-gel-dip-coating technique. The samples were submitted to excitation with below theoretical bandgap light (450 nm), as well as above bandgap light (266 nm) at low temperature, and a temperature-dependent increase in the conductivity is observed. Besides, an unusual temperature and time dependent decay when the illumination is removed is also observed, where the decay time is slower for higher temperatures. This decay is modeled by considering thermally activated cross section of trapping centers, and the hypothesis of grain boundary scattering as the dominant mechanism for electronic mobility. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Hydrogen oxidation on the surfaces of the intermetallic compounds Pt 3Sn, PtSn and PtSn2 has been studied by the rotating disc electrode technique. Pt3Sn and PtSn were found to be good catalysts, about as good as Pt, while PtSn2 was inactive over the investigated range of potentials. Underpotential deposition of hydrogen is observed only on Pt3Sn. These results are explained by theoretical calculations based on a theory developed within our own group, and by density functional theory. © 2012 Elsevier B.V.
Resumo:
In this paper, we demonstrate that the intrinsic electric field created by a poly(o-methoxyaniline) (POMA) cushion layer hinders the changes in molecular conformation of poly(p-phenylenevinylene) (PPV) in layer-by-layer with dodecylbenzene sulfonic acid (DBS). This was modeled with density functional theory (DFT) calculations where an energy barrier hampered molecular movements of PPV segments when they were subjected to an electric field comparable to that caused by a charged POMA layer. With restricted changes in molecular conformation, the PPV film exhibited Franck-Condon transitions and the photoexcitation spectra resembled the absorption spectra, in contrast to PPV/DBS films deposited directly on glass, with no POMA cushion. Other effects from the POMA cushion were the reduced number of structural defects, confirmed with Raman spectroscopy, and an enhanced PPV emission at high temperatures (300 K) in comparison with the films on bare glass. The positive effects from the POMA cushion may be exploited for enhanced opto-electronic devices, especially as the intrinsic electric field may assist in separating photoexcited electron-hole pairs in photovoltaic devices. © 2013 American Institute of Physics.
Resumo:
In this letter, we report, for the first time, the real-time in situ nucleation and growth of Ag filaments on α-Ag2 WO4 crystals driven by an accelerated electron beam from an electronic microscope under high vacuum. We employed several techniques to characterise the material in depth. By using these techniques combined with first-principles modelling based on density functional theory, a mechanism for the Ag filament formation followed by a subsequent growth process from the nano-to micro-scale was proposed. In general, we have shown that an accelerated electron beam from an electronic microscope under high vacuum enables in situ visualisation of Ag filaments with subnanometer resolution and offers great potential for addressing many fundamental issues in materials science, chemistry, physics and other fields of science.
Resumo:
In this paper, a combined theoretical and experimental study on the electronic structure and photoluminescence (PL) properties of beta zinc molybdate (β-ZnMoO4) microcrystals synthesized by the hydrothermal method has been employed. These crystals were structurally characterized by X-ray diffraction (XRD), Rietveld refinement, Fourier transform Raman (FT-Raman) and Fourier transform infrared (FT-IR) spectroscopies. Their optical properties were investigated by ultraviolet-visible (UV-Vis) absorption spectroscopy and PL measurements. First-principles quantum mechanical calculations based on the density functional theory at the B3LYP level have been carried out. XRD patterns, Rietveld refinement, FT-Raman and FT-IR spectra showed that these crystals have a wolframite-type monoclinic structure. The Raman and IR frequencies experimental results are in reasonable agreement with theoretically calculated results. UV-Vis absorption measurements shows an optical band gap value of 3.17 eV, while the calculated band structure has a value of 3.22 eV. The density of states indicate that the main orbitals involved in the electronic structure of β-ZnMoO4 crystals are (O 2p-valence band and Mo 4d-conduction band). Finally, PL properties of β-ZnMoO4 crystals are explained by means of distortions effects in octahedral [ZnO6] and [MoO6] clusters and inhomogeneous electronic distribution into the lattice with the electron density map. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
The widespread use of poly(3-hexylthiophene) (P3HT) in the active layers of organic solar cells indicates that it possesses chemical stability and solubility suitable for such an application. However, it would be desirable to have a material that can maintain these properties but with a smaller bandgap, which would lead to more efficient energy harvesting of the solar spectrum. Fifteen P3HT derivatives were studied using the Density Functional Theory. The conclusion is that it is possible to obtain compounds with significantly smaller bandgaps and with solubility and stability similar to that of P3HT, mostly through the binding of oxygen atoms or conjugated organic groups to the thiophenic ring. © 2013 Wiley Periodicals, Inc.
Resumo:
The hexagonal nanomembranes of the group III-nitrides are a subject of interest due to their novel technological applications. In this paper, we investigate the strain- and electric field-induced modulation of their band gaps in the framework of density functional theory. For AlN, the field-dependent modulation of the bandgap is found to be significant whereas the strain-induced semiconductor-metal transition is predicted for GaN. A relatively flat conduction band in AlN and GaN nanomembranes leads to an enhancement of their electronic mobility compared to that of their bulk counterparts. © 2013 IOP Publishing Ltd.