144 resultados para cholinergic agonist
Resumo:
We investigated plasma luteinizing hormone (LH) concentration in domestic male cats challenged with Luteinizing Hormone Releasing Hormone Analog (LHRH-A) [des Gly10, (DTrp6)-LHRH ethylamide] that mediates the function of the hypothalamic-piruitary-gonadal axis (HPG). Plasma LH concentrations in cats treated daily with LHRH (10 μg/ 100 μl/kg/day, subcutaneously - sc) for 19 days (LHRH group) and in controls treated with saline (NaCl - 0.9%, same volume - SAL group) were chronically studied. LHRH administration (sc) for 15 days induced a significant fall (P < 0.05) in plasma LH concentrations during the chronic study. After the 15th day of treatment the groups were divided once more into animals treated with LHRH (10 μg/100 μl/kg) or saline (iv), and a time course study (300 min) was performed (acute study). Next, four groups of cats were compared in an acute study involving the sc/iv administration of SAL/SAL, SAL/LHRH, LHRH/SAL, and LHRH/LHRH. The responses of the SAL animals challenged by acute iv administration of LHRH (group SAL/LHRH) were significantly higher (P < 0.01) than those of animals treated with LHRH (sc) (group LHRH/LHRH). LH release was also significantly increased in the latter group (P < 0.05), although the effect was short lasting, being recorded only at the first observation (45 min). An in vitro study with the pituitaries was also performed on day 20. Mean (±SEM) LH concentrations in the culture medium containing pituitaries with LHRH (10-7 M) or saline were determined. In vitro analysis of these pituitaries demonstrated a significantly reduced response (P < 0.05) by animals treated sc with LHRH for 19 days. This study represents a source of data for the domestic cat going beyond its own physiology. Serving as a model, this animal provide important information for the study of reproductive physiology in other members of its family (Felidae), almost all of them threatened with extinction.
Resumo:
Proteinase-activated receptor-2 (PAR2) is a G-protein-coupled receptor that mediates cellular responses to extracellular proteinases. Since PAR2 is expressed by oral epithelial cells, osteoblasts, and gingival fibroblasts, where its activation releases interleukin-8, we hypothesized that PAR2 activation may participate in periodontal disease in vivo. We investigated the role of PAR2 activation in periodontal disease in rats. Radiographic and enzymatic (myeloperoxidase) analysis revealed that topical application of PAR2 agonist causes periodontitis but also exacerbates existing periodontitis, leading to significant alveolar bone loss and gingival granulocyte infiltration. Inhibition of matrix metalloproteinase (MMP) and cyclo-oxygenase (COX) decreased PAR2 agonist-induced periodontitis. More specifically, the overexpression of COX-1, COX-2, MMP-2, and MMP-9 in gingival tissues suggests that they are involved in PAR 2-induced periodontitis. In conclusion, PAR2 agonist causes periodontitis in rats through a mechanism involving prostaglandin release and MMP activation. Inhibition of PAR2 may represent a novel approach to modulate host response in periodontitis.
Resumo:
The aim of this meta-analysis was to compare the efficacy of gonadotrophin antagonist (GnRH-ant) versus GnRH agonist (GnRHa) as coadjuvant therapy for ovarian stimulation in poor ovarian responders in IVF/intracytoplasmic sperm injection cycles. Search strategies included on-line surveys of databases such as MEDLINE, EMBASE and others. A fixed effects model was used for odds ratio (OR) and effect size (weighted mean difference, WMD). Six trials fulfilled the inclusion criteria (randomized controlled trials). There was no difference between GnRH-ant and GnRHa (long and flare-up protocols) with respect to cycle cancellation rate, number of mature oocytes and clinical pregnancy rate per cycle initiated, per oocyte retrieval and per embryo transfer. When the mete-analysis was applied to the two trials that had used GnRH-ant versus long protocols of GnRHa, a significantly higher number of retrieved oocytes was observed in the GnRH-ant protocols [P = 0.018; WMD: 1.12 (0.18, 2.05)]. However, when the meta-analysis was applied to the four trials that had used GnRH-ant versus flare-up protocols, a significantly higher number of retrieved oocytes (P = 0.032; WMD: -0.51, 95% CI -0.99, -0.04) was observed in the GnRHa protocols. Nevertheless, additional randomized controlled trials with better planning are needed to confirm these results.
Resumo:
Thyroid hormone receptors (TRs) are ligand-gated transcription factors with critical roles in development and metabolism. Although x-ray structures of TR ligand-binding domains (LBDs) with agonists are available, comparable structures without ligand (apo-TR) or with antagonists are not. It remains important to understand apo-LBD conformation and the way that it rearranges with ligands to develop better TR pharmaceuticals. In this study, we conducted hydrogen/deuterium exchange on TR LBDs with or without agonist (T 3) or antagonist (NH3). Both ligands reduce deuterium incorporation into LBD amide hydrogens, implying tighter overall folding of the domain. As predicted, mass spectroscopic analysis of individual proteolytic peptides after hydrogen/ deuterium exchange reveals that ligand increases the degree of solvent protection of regions close to the buried ligand-binding pocket. However, there is also extensive ligand protection of other regions, including the dimer surface at H10-H11, providing evidence for allosteric communication between the ligand-binding pocket and distant interaction surfaces. Surprisingly, Cterminal activation helix H12, which is known to alter position with ligand, remains relatively protected from solvent in all conditions suggesting that it is packed against the LBD irrespective of the presence or type of ligand. T 3, but not NH3, increases accessibility of the upper part of H3-H5 to solvent, and we propose that TR H12 interacts with this region in apo-TR and that this interaction is blocked by T 3 but not NH3.Wepresent data from site-directed mutagenesis experiments and molecular dynamics simulations that lend support to this structural model of apo-TR and its ligand-dependent conformational changes. (Molecular Endocrinology 25: 15-31, 2011). Copyright © 2011 by The Endocrine Society.
Resumo:
Objective: To compare cost-effectiveness between pituitary down-regulation with a GnRH agonist (GnRHa) short regimen on alternate days and GnRH antagonist (GnRHant) multidose protocol on in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) outcome. Design: Prospective, randomized. Setting: A private center. Patient(s): Patients were randomized into GnRHa (n = 48) and GnRHant (n = 48) groups. Intervention(s): GnRHa stimulation protocol: administration of triptorelin on alternate days starting on the first day of the cycle, recombinant FSH (rFSH), and recombinant hCG (rhCG) microdose. GnRHant protocol: administration of a daily dose of rFSH, cetrorelix, and rhCG microdose. Main Outcome Measure(s): ICSI outcomes and treatment costs. Result(s): A significantly lower number of patients underwent embryo transfer in the GnRHa group. Clinical pregnancy rate was significantly lower and miscarriage rate was significantly higher in the GnRHa group. It was observed a significant lower cost per cycle in the GnRHa group compared with the GnRHant group ($5,327.80 ± 387.30 vs. $5,900.40 ± 472.50). However, mean cost per pregnancy in the GnRHa was higher than in the GnRHant group ($19,671.80 ± 1,430.00 vs. $11,328.70 ± 907.20). Conclusion(s): Although the short controlled ovarian stimulation protocol with GnRHa on alternate days, rFSH, and rhCG microdose may lower the cost of an individual IVF cycle, it requires more cycles to achieve pregnancy. Clinical Trial Registration Number: NCT01468441. © 2013 by American Society for Reproductive Medicine.
Resumo:
Cochlear root neurons (CRNs) are the first brainstem neurons which initiate and participate in the full expression of the acoustic startle reflex. Although it has been suggested that a cholinergic pathway from the ventral nucleus of the trapezoid body (VNTB) conveys auditory prepulses to the CRNs, the neuronal origin of the VNTB-CRNs projection and the role it may play in the cochlear root nucleus remain uncertain. To determine the VNTB neuronal type which projects to CRNs, we performed tract-tracing experiments combined with mechanical lesions, and morphometric analyses. Our results indicate that a subpopulation of non-olivocochlear neurons projects directly and bilaterally to CRNs via the trapezoid body. We also performed a gene expression analysis of muscarinic and nicotinic receptors which indicates that CRNs contain a cholinergic receptor profile sufficient to mediate the modulation of CRN responses. Consequently, we investigated the effects of auditory prepulses on the neuronal activity of CRNs using extracellular recordings in vivo. Our results show that CRN responses are strongly inhibited by auditory prepulses. Unlike other neurons of the cochlear nucleus, the CRNs exhibited inhibition that depended on parameters of the auditory prepulse such as intensity and interstimulus interval, showing their strongest inhibition at short interstimulus intervals. In sum, our study supports the idea that CRNs are involved in the auditory prepulse inhibition of the acoustic startle reflex, and confirms the existence of multiple cholinergic pathways that modulate the primary acoustic startle circuit. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Cholinergic activation of the medial septal area (MSA) with carbachol produces thirst, natriuresis, antidiuresis and pressor response. In the brain, hydrogen peroxide (H2O2) modulates autonomic and behavioral responses. In the present study, we investigated the effects of the combination of carbachol and H2O2 injected into the MSA on water intake, renal excretion, cardiovascular responses and the activity of vasopressinergic and oxytocinergic neurons in the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei. Furthermore, the possible modulation of carbachol responses by H2O2 acting through K+ATP channels was also investigated. Male Holtzman rats (280–320 g) with stainless steel cannulas implanted in the MSA were used. The pre-treatment with H2O2 in the MSA reduced carbachol-induced thirst (7.9 ± 1.0, vs. carbachol: 13.2 ± 2.0 ml/60 min), antidiuresis (9.6 ± 0.5, vs. carbachol: 7.0 ± 0.8 ml/120 min,), natriuresis (385 ± 36, vs. carbachol: 528 ± 46 μEq/120 min) and pressor response (33 ± 5, vs. carbachol: 47 ± 3 mmHg). Combining H2O2 and carbachol into the MSA also reduced the number of vasopressinergic neurons expressing c-Fos in the PVN (46.4 ± 11.2, vs. carbachol: 98.5 ± 5.9 c-Fos/AVP cells) and oxytocinergic neurons expressing c-Fos in the PVN (38.5 ± 16.1, vs. carbachol: 75.1 ± 8.5 c-Fos/OT cells) and in the SON (57.8 ± 10.2, vs. carbachol: 102.7 ± 7.4 c-Fos/OT cells). Glibenclamide (K+ATP channel blocker) into the MSA partially reversed H2O2 inhibitory responses. These results suggest that H2O2 acting through K+ATP channels in the MSA attenuates responses induced by cholinergic activation in the same area.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study was aimed to test low doses of a GnRH agonist, deslorelin acetate (DA), for induction of multiple ovulations in mares and to determine its impact upon their reproductive efficiency. Seven mares aging from 8-20 years were used in three consecutive reproductive cycles. Mares were initially monitored by ultrasound irrespectively of cycle stage, inseminated and submitted to embryo collection (EC) (T1). Immediately after, mares received 7.5 mg dinoprost tromothamine (DT) and were monitored by ultrasound twice a day until larger follicle reached 23-25mm and the second >18mm (T2). At this time point, mares received 100 mu g DA and ovulation was induced with 1000 mu g DA and 1000IU hCG when largest follicle reached 33-35mm in diameter, followed by EC. Mares were further allocated to T3 when received 7.5 mg DT after EC on 12 and 100 mu g DA 48 h later. DA treatment was performed until dominant follicle reached 34 +/- 1 mm or 6 days of application. All EC were performed 8 days after ovulation. Mares with multiple ovulations in T1, T2 and T3 were 14.28% (1/7), 100.00% (7/7) and 0.00% (0/7), respectively, and averaged 0.43 +/- 0.53 in T1, 0.86 +/- 0.38 in T2 and 0.00 in T3 embryos per donor, respectively. Embryo recovery rate was 43.00% in T1, 85.71% in T2 and 0.00% T3. In conclusion, use of DA in mares with follicles larger than 25mm enhanced dominant and co-dominant follicle growth, that ultimately increased the incidence of multiple ovulations and embryo recovery rate.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The jeju is a teleost fish with bimodal respiration that utilizes a modified swim bladder as an air-breathing organ (ABO). Like all air-breathing fish studied to date, jeju exhibit pronounced changes in heart rate (f(H)) during air-breathing events, and it is believed that these may facilitate oxygen uptake (M-O2) from the ABO. The current study employed power spectral analysis (PSA) of f(H) patterns, coupled with instantaneous respirometry, to investigate the autonomic control of these phenomena and their functional significance for the efficacy of air breathing. The jeju obtained less than 5% of total M-O2 (M-tO2) from air breathing in normoxia at 26 degrees C, and PSA of beat-to-beat variability in fH revealed a pattern similar to that of unimodal water-breathing fish. In deep aquatic hypoxia (water P-O2=1 kPa) the jeju increased the frequency of air breathing (f(AB)) tenfold and maintained M-tO2 unchanged from normoxia. This was associated with a significant increase in heart rate variability (HRV), each air breath (AB) being preceded by a brief bradycardia and then followed by a brief tachycardia. These f(H) changes are qualitatively similar to those associated with breathing in unimodal air-breathing vertebrates. Within 20 heartbeats after the AB, however, a beat-to-beat variability in f(H) typical of water-breathing fish was re-established. Pharmacological blockade revealed that both adrenergic and cholinergic tone increased simultaneously prior to each AB, and then decreased after it. However, modulation of inhibitory cholinergic tone was responsible for the major proportion of HRV, including the precise beat-to-beat modulation of f(H) around each AB. Pharmacological blockade of all variations in f(H) associated with air breathing in deep hypoxia did not, however, have a significant effect upon f(AB) or the regulation of M-tO2. Thus, the functional significance of the profound HRV during air breathing remains a mystery.