95 resultados para Wind power plants
Resumo:
The renewable energy sources presents an important role on the world's current context, its growing is essentially connected to the environmental issues and the energetic security, guided by the search for alternatives of energy. Among the alternative energy sources, the wind energy shows great importance in the brazilian territory, it has a great potential still unexplored and constant growth in the national electric matrix. The specific factor of generation, the conjuncture and the incentive politics influence on the expansion of wind energy in Brazil. Thus, the brazilian wind sector shows features which can be evaluated enable its developing. Keeping that in mind, the present work aims identify which are the advantages and the difficulties for the expansion of this energy source in the brazilian electric matrix. For that, the work studies the different parameters: features of electric generation of the different energy sources, incentive politics, generation costs, CO2 emission, evolution of wind energy in Brazil, the brazilian wind potential, and the regime of complementarily hydro-wind
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Pós-graduação em Geografia - FCT
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Pós-graduação em Ciências Biológicas (Zoologia) - IBB
Resumo:
The Bi-Sr-Ca-Cu-O system has been one of the most studied superconducting ceramic materials for industry applications. The most of the studies with this aim are on silver/ceramic composites, due to the benefits and great compatibility of this metal with the oxide. Tapes made by the powder in tube (PIT) method have been successfully tested in pilot power plants in many countries but in Brazil. In this paper, 5, 10, and 20-wt% silver powders are introduced to compose the core of the tape along with the Bi:2212 ceramic powder. The results of electrical experiments are compared with those made with no silver addition Ag tapes. The best current density, at 60 K and no applied magnetic field, was found for the 10-wt% silver proportion, doubling the value obtained for the tape with no silver in the core.
Resumo:
Pós-graduação em Engenharia de Produção - FEB
Resumo:
The availability of the electrical energy, in sufficient quantities and in competitive prices is a crucial factor to the economic development. The trade-in of the excess electrical energy produced in a system of cogeneration can be seen as an alternative to the creation of an additional source of revenues for ethanol power plants sector, besides contributing to the complementation of the Brazilian electrical headquarter with renewable sources. The objective of this study was to evaluate the economic feasibility of the implementation of a cogeneration electrical central using the excess of sugar cane bagasse and selling the excess of electrical energy with prices of the market. An ethanol power plant located in the state of Sao Paulo was used to this study. It was used the case study methodology, evaluating the potential of the investment under the viewpoint of the Net Present Value (NPV), Payback and Internal Rate of Return (IRR), and complementing the results of the Accounting Results (AC). It was created three alternative scenarios to reflect the level of the risk of every studied situation: the most likely, an optimistic and a pessimistic, each one with its assumptions. The Monte Carlo Simulations was used to insert the elements of risk to each scenario. The results showed that the project is feasible in all NPV scenarios. And the Payback and IRR analysis confirmed these evidences. The valuation with the AR showed that the project is most risky at the pessimistic scenario, but is feasibly in the most likely and the optimistic scenarios. It was concluded that the project is economic viable. However, the economic viability shown in the results is based on the maintenance of the future prices on the levels of the historical prices used in the analysis.
Resumo:
The use of alternative energy systems in the current days is an urgent necessity due to the problems that the planet is facing as the heating and loss of ozone layer. The scarcity of conventional energy is another problem that must be solved for the future of humanity. It must be considered that the people are inhabiting places moved away not always with available energy. The application of technologies as automation and control can help us to solve this problem. Therefore, this work aimed at apply an equipment of industrial usage, the Programmable Logical Controller, PLC, in alternative energies systems, as eolic generation and fotovoltaic generation used for water pumping, aiming the automatic control and the efficiency in the places where it has simultaneous availability of these sources, based in criterion of priority that previously established itself between them. It was made a hydraulic and energetic evaluation of the energy system, eolic and fotovoltaic, used in the automatic control system of pumping, in the place of accomplishment of the experiment, according to previously established physical conditions. The results have shown that the control system using the PLC is practicable and has trustworthiness. The program developed can be adapted for the use with several power plants in a specific application place. The fotovoltaic system of pumping, using a polycrystalline of 70 Watts connected to a pump Shurflo 8000, showed to be efficient with significant flows in almost all the months. The eolic system of pumping, using an eolic generator of 400 Watts assembled in place of experiment, did not demonstrate energetic capacity for use in this specific type of application.
Resumo:
This paper presents the application and use of a methodology based on fuzzy theory and simulates its use in intelligent control of a hybrid system for generating electricity, using solar energy, photovoltaic and wind. When using a fuzzy control system, it reached the point of maximum generation of energy, thus shifting all energy generated from the alternative sources-solar photovoltaic and wind, cargo and / or batteries when its use not immediately. The model uses three variables used for entry, which are: wind speed, solar radiation and loading the bank of batteries. For output variable has to choose which of the batteries of the battery bank is charged. For the simulations of this work is used MATLAB software. In this environment mathematical computational are analyzed and simulated all mathematical modeling, rules and other variables in the system described fuzzy. This model can be used in a system of control of hybrid systems for generating energy, providing the best use of energy sources, sun and wind, so we can extract the maximum energy possible these alternative sources without any prejudice to the environment.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)