251 resultados para Tunable luminescence


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work reports on the study of the nanophosphor. Y2O2S:Er(2%),Yb(1%) obtained from polymeric resin to be evaluated as fluorescent label with Suitable features to conjugate with bio-molecules for bioassay up-converting phosphor technology (UPT) application A conjugation protocol between bovine serum albumin (BSA) and the aminofunctionalized nanophosphor containing or not spherical silica was established UV-vis results indicated an effective conjugation between nanophosphor particles and the protein up-conversion measurements under 980 nm excitation performed for samples before and after aminofunctionalization showed that nanophosphor particles luminescence features keep unchanged in all cases All results suggest that the adapted protocol is feasible to provide a nanoparticle-protein effective conjugation preserving nanophosphor optical features The presence of spherical silica can be considered advantageous to increase conjugation efficiency Therefore. the developed procedure is applicable for future conjugations between the chosen nanophosphor and the streptavidin protein chat takes part in the well known self-recognition system avidin-biotin. (C) 2009 Elsevier B.V All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a previous study, we showed that purified commercial esterase activity can be detected in a chemiluminescent assay based on the hydrolysis of 2-methyl-1-propenylbenzoate (MPB) to 2-methyl-1-propenol, which is subsequently oxidized by the horseradish peroxidase (HRP)-H2O2 system. The purpose of this study was to verify the applicability of this assay to human serum. The existence of an esterase activity capable of hydrolysing MPB is indicated by the fact that the MPB-scruin-HRP-H2O2 System consumes oxygen and emits light. Both signals were abolished by prior serum heat inactivation and were preserved when serum was stored at less than or equal to4 degreesC. Addition of aliesterase inhibitors, such as fluoride ion and trichlorfon or the cholinesterase inhibitor eserine, totally prevents light emission. The butyrylcholinesterase-specific substrate benzoylcholine causes a delay in both O-2 uptake and light emission, while the specific acetylcholinesterase substrate, acetyl-beta -methylcholine, had practically no effect. Purified butyrylcholinesterase, but not acetylcholinesterase, triggered light emission. The finding that butyryleholinesterase is responsible for the hydrolysis of MPB in serum should serve as the basis for the development of a specific chemiluminescent assay for this enzyme. Copyright (C) 2001 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Flexible, transparent, and insoluble urea-cross-linked polyether-siloxane hybrids presenting a tunable drug delivery pattern were prepared using the sol-gel method from PEO (poly(ethylene oxide)) and PPO (poly(propylene oxide)) functionalized at both chain ends with triethoxysilane. Different polyether chain lengths were used to control the urea/siloxane (named ureasil) node density, flexibility, and swellability of the hybrid network. We herein demonstrate that the drug release from swellable hydrophilic ureasil-PEO hybrids can be sustained for some days, whereas that from the unswellable ureasil-PPO hybrids can be sustained for some weeks. This outstanding feature conjugated with the biomedically safe formulation of the ureasil cross-linked polyether-siloxane hybrid widens their scope of application to include the domain of soft and implantable drug delivery devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Photoluminescence data of Eu-doped SnO(2) xerogels are presented, yielding information on the symmetry of Eu(3+) luminescent centers, which can be related to their location in the matrix: at lattice sites, substituting to Sn(4+), or segregated at particles surface. Influence of doping concentration and/or particle size on the photoluminescence spectra obtained by energy transfer from the matrix to Eu(3+) sites is investigated. Results show that a better efficiency in the energy transfer processes is obtained for high symmetry Eu(3+) sites and low doping levels. Emission intensity from (5)D(0) -> (7)F(1) transition increases as the temperature is raised from 10 to 240 K, under excitation at 266 nm laser line, because in this transition the multiphonon emission becomes significant only above 240 K. As an extension of this result, we predict high effectiveness for room temperature operation of Eu-based optical communication devices. X-ray diffraction data show that the impurity excess inhibits particle growth, which may influence the asymmetry ratio of luminescence spectra.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the effect of solvent on the rhodamine 6G encapsuled into channels of mesoporous silica, synthesized by two-step process that gives intermediary stable hybrid micelles. Mesoporous materials have been obtained by the method that involves surfactant micelles (mainly cationic) and inorganic precursor of the structure to be obtained. MSU-X type mesoporous silica has been synthesized with polyethylene oxide surfactant as the directing-structure agent and tetraethyl orthosilicate Si(OEt)(4) as the silica source. The influence of the solvent on the encapsulation of rhodamine dye was systematically explored, specially its influence on the luminescence properties. Rhodamine 6G encapsuled into mesoporous silica channel was characterized by UV-Vis and luminescence spectroscopies, scanning electron microscopy, small angle x ray scattering and N(2) sorption-desorption. The pore size and the solvent effects into luminescence dye encapsuled into mesoporous silica channels are observed in the visible absorption and emission spectra of rhodamine 6G. The intense photo luminescence band of rhodamine 6G dye is in 500 to 600 nm region. The observed shift of the absorption and emission bands can be assigned to the effect of the solvents dielectric constant and pore size of mesoporous silica.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The trajectory of the first excited Efimov state is investigated by using a renormalized zero-range three-body model for a system with two bound and one virtual two-body subsystems. The approach is applied to n-n-C-18, where the n-n virtual energy and the three-body ground state are kept fixed. It is shown that such three-body excited state goes from a bound to a virtual state when the n-C-18 binding energy is increased. Results obtained for the n-C-19 elastic cross-section at low energies also show dominance of an S-matrix pole corresponding to a bound or virtual Efimov state. It is also presented a brief discussion of these findings in the context of ultracold atom physics with tunable scattering lengths. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pole trajectory of Efimov states for a three-body alpha alpha beta system with alpha alpha unbound and alpha beta bound is calculated using a zero-range Dirac-delta potential. It is shown that a three-body bound state turns into a virtual one by increasing the alpha beta binding energy. This result is consistent with previous results for three equal mass particles. The present approach considers the n-n-(18)C halo nucleus. However, the results have good perspective to be tested and applied in ultracold atomic systems, where one can realize such three-body configuration with tunable two-body interaction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The properties of Langmuir and Langmuir-Blodgett (LB) films from a block copolymer with polyethylene oxide and phenylene-vinylene moieties are reported. The LB films were successfully transferred onto several types of substrates, with sufficient quality to allow for evaporation of a metallic electrode on top of the LB films to produce polymer light emitting diodes (PLEDs). The photoluminescence and electroluminescence spectra of the LB film and device were similar, featuring an emission at ca. 475 nm, from which we could infer that the emission mechanisms are essentially the same as in poly(p-phenylene) derivatives. Analogously to other PLEDs the current versus voltage characteristics of the LB-based device could be explained with the Arkhipov model according to which charge transport occurs among localized sites. The implications for nanotechnology of the level of control that may be achieved with LB devices will also be discussed.