328 resultados para Torque aerodinâmico


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The rotational motion of an artificial satellite is studied by considering torques produced by gravity gradient and direct solar radiation pressure. A satellite of circular cylinder shape is considered here, and Andoyers variables are used to describe the rotational motion. Expressions for direct solar radiation torque are derived. When the earth's shadow is not considered, an analytical solution is obtained using Lagrange's method of variation of parameters. A semi-analytical procedure is proposed to predict the satellite's attitude under the influence of the earth's shadow. The analytical solution shows that angular variables are linear and periodic functions of time while their conjugates suffer only periodic variations. When compared, numerical and analytical solutions have a good agreement during the time range considered.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Classical models of gravity gradient, solar radiation, aerodynamic and magnetic torques acting on a circular cylinder satellite. The magnitude of each such are compared with parameterization in terms of the dimensions of the satellite and its altitude in relation to the Earth's surface. Two different satellite data are considered. The results agree with the classical results and show that for altitude between 0 and 800 km the gravity gradient, aerodynamic and magnetic torques decrease with altitude while the solar radiation torque is almost independent of the altitude. The relative importance of these torques depends on the size, mass, moments of inertia and altitude of the satellite. The results can be useful to propagate the satellite attitude, to satellite missions analysis and to validate the analytical approaches. (C) 2003 COSPAR. Published by Elsevier B.V. Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three sets of non-singular canonical variables for the rotational motion are analyzed. These sets are useful when the angle between z-axis of a coordinate system fixed in artificial satellite ( here defined by the directions of principal moments of inertia of the satellite) and the rotational angular momentum vector is zero or when the angle between Z-inertial axis and rotational angular momentum vector is zero. The goal of this paper is to compare all these sets and to determine the benefits of their uses. With this objective, the dynamical equations of each set were derived, when mean hamiltonian associate with the gravity gradient torque is included. For the torque-free rotational motion, analytical solutions are computed for symmetrical satellite for each set of variables. When the gravity gradient torque is included, an analytical solution is shown for one of the sets and a numerical solution is obtained for one of the other sets. By this analysis we can conclude that: the dynamical equation for the first set is simple but it has neither clear geometrical nor physical meaning; the other sets have geometrical and physical meaning but their dynamical equations are more complex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The power system stability analysis is approached taking into explicit account the dynamic performance of generators internal voltages and control devices. The proposed method is not a direct method in the usual sense since conclusion for stability or instability is not exclusively based on energy function considerations but it is automatic since the conclusion is achieved without an analyst intervention. The stability test accounts for the nonconservative nature of the system with control devices such as the automatic voltage regulator (AVR) and automatic generation control (AGC) in contrast with the well-known direct methods. An energy function is derived for the system with machines forth-order model, AVR and AGC and it is used to start the analysis procedure and to point out criticalities. The conclusive analysis itself is made by means of a method based on the definition of a region surrounding the equilibrium point where the system net torque is equilibrium restorative. This region is named positive synchronization region (PSR). Since the definition of the PSR boundaries have no dependence on modelling approximation, the PSR test conduces to reliable results. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Surface and biomechanical analysis of titanium implant surfaces modified by laser beam with and without hydroxyapatite. Titanium implants with 3 different surfaces were inserted into the tibias of 30 rabbits: group I (GI) machined surface (control group), group II irradiated with laser (GII), and group III irradiated with laser and hydroxyapatite coating applied-biomimetic method (GIII). Topographical analysis with scanning electron microscopy was made before surgery in the tibia. These rabbits were distributed into 2 periods of observation: 4 and 8 weeks postsurgery, after which biomechanical analysis (removal torque) was conducted. Statistical analysis used the Student-Newman-Keuls method. Surface showed roughness in GII and GIII. Biomechanical analysis demonstrated values with significant differences in GII and GIII. Titanium implants modified by laser irradiation can increase osseointegration during the initial phase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to evaluate implants installed with compromised primary stability associated or not with polylactide and polyglycolide copolymer (PLA/PGA). Two 0.4-mm overdrilled defects (3 mm in diameter and 6 mm long) were produced in the right tibia of 25 rabbits. Half of the defects were left untreated, and the other half was filled with PLA/PGA. Implants of 2.6 mm in diameter and 6 mm long were placed into all defects. Animals were killed at 5, 15, 40, and 60 postoperative days, and biomechanical analysis (torque-reverse), histomorphometry, and immunohistochemistry (osteoprotegerin, receptor activator of NFJB ligand [RANKL], osteocalcin, and collagen-1 [ COL- I] staining) were performed. All the implants achieved osseointegration. There were no statistically significant differences in the torque-reverse and in linear contact extension between bone tissue and implant surface and no statistically significant difference in osteoprotegerin, RANKL, osteocalcin, and collagen-1 expression between the studied groups in all studied periods (P > 0.05). We can conclude that osseointegration can occur in compromised primary implant stability situations, and the addition of PLA/PGA did not improve the osseointegration process in this experimental model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: This study compared the maintenance of tightening torque in different retention screw types of implant-supported crowns.Materials and Methods: Twelve metallic crowns in UCLA abutments cast with cobalt-chromium alloy were attached to external hexagon osseointegrated implants with different retention screws: group A: titanium alloy retention screw; group B: gold alloy retention screw with gold coating; group C: titanium alloy retention screw with diamond-like carbon film coating; and group D: titanium alloy retention screw with aluminum titanium nitride coating. Three detorque measurements were obtained after torque insertion in each replica. Data were evaluated by analysis of variance (ANOVA), Tukey's test (P < 0.05), and t test (P < 0.05).Results: Detorque value reduced in all groups (P < 0.05). Group A retained the highest percentage of torque in comparison with the other groups (P < 0.05). Groups B and D retained the lowest percentage of torque without statistically significant difference between them (P < 0.05).Conclusions: All screw types exhibited reduction in the detorque value. The titanium screw maintained the highest percentage of torque whereas the gold-coated screw and the titanium screw with aluminum titanium nitride coating retained the lowest percentage. (Implant Dent 2012;21:46-50)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: The aim of this study was to evaluate the effect of mechanical cycling and different misfit levels on Vicker's microhardness of retention screws for single implant-supported prostheses.Materials and Methods: Premachined UCLA abutments were cast with cobalt-chromium alloy to obtain 48 crowns divided into four groups (n = 12). The crowns presented no misfit in group A (control group) and unilateral misfits of 50 mu m, 100 mu m, and 200 mu m in groups B, C, and D, respectively. The crowns were screwed to external hexagon implants with titanium retention screws (torque of 30 N/cm), and the sets were submitted to three different periods of mechanical cycling: 2 x 10(4), 5 x 10(4), and 1 x 10(6) cycles. Screw microhardness values were measured before and after each cycling period. Data were evaluated by two-way ANOVA and Tukey's test (p < 0.05).Results: Mechanical cycling statistically reduced microhardness values of retention screws regardless of cycling periods and groups. In groups A, B, and C, initial microhardness values were statistically different from final microhardness values (p < 0.05). There was no statistically significant difference for initial screw microhardness values (p > 0.05) among the groups; however, when the groups were compared after mechanical cycling, a statistically significant difference was observed between groups B and D (p < 0.05).Conclusions: Mechanical cycling reduced the Vicker's microhardness values of the retention screws of all groups. The crowns with the highest misfit level presented the highest Vicker's microhardness values.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to evaluate the effect of unilateral misfit at different levels on a crown-implant-retention screw system of implant-supported crowns. Hexagon castable UCLA abutments were cast in Co-Cr alloy to fabricate 48 metallic crowns divided into four groups (n = 12). Group A: crowns did not present misfit; Groups B, C and D: crowns were fabricated with unilateral misfit of 50, 100, and 200 mu m, respectively. The crowns were attached by titanium retention screw with 30 N/cm to external hexagonal osseointegrated implants embedded in acrylic resin. After 2 min, the retention screw of each replica was submitted to detorque evaluation by an analogic torque gauge. Three retention screws were used to perform detorque evaluation at each replica and the procedure was repeated twice with each screw. Each group was submitted to 72 detorque measurements. Data were evaluated by ANOVA and Tukey test (P < 0.05). All groups exhibited significant decrease (P < 0.05) in preload and the lowest decrease occurred in Group A. Groups B, C, and D were statistically significant different from Group A (P < 0.05), but there was no statistically significant difference between Groups B and D (P > 0.05). Crowns with unilateral misfit presented higher preload decrease than crowns completely fitted to osseointegrated implants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To evaluate the biomechanical fixation, bone-to-implant contact (BIC), and bone morphology of screw-type root-form implants with healing chambers with as-machined or dual acid-etched (DAE) surfaces in a canine model. Materials and Methods: The animal model included the placement of machined (n = 24) and DAE (n = 24) implants along the proximal tibiae of six mongrel dogs, which remained in place for 2 or 4 weeks. Following euthanasia, half of the specimens were subjected to biomechanical testing (torque to interface failure) and the other half were processed for histomorphologic and histomorphometric (%BIC) assessments. Statistical analyses were performed by one-way analysis of variance at the 95% confidence level and the Tukey post hoc test for multiple comparisons. Results: At 4 weeks, the DAE surface presented significantly higher mean values for torque to interface failure overall. A significant increase in %BIC values occurred for both groups over time. For both groups, bone formation through the classic appositional healing pathway was observed in regions where intimate contact between the implant and the osteotomy walls occurred immediately after implantation. Where contact-free spaces existed after implantation (healing chambers), an intramembranous-like healing mode with newly formed woven bone prevailed. Conclusions: In the present short-term evaluation, no differences were observed in BIC between groups; however, an increase in biomechanical fixation was seen from 2 to 4 weeks with the DAE surface. INT J ORAL MAXILLOFAC IMPLANTS 2011;26:75-82