95 resultados para Theoretical stress concentration factor
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The purpose of this study was to analyze the biomechanical interactions in bone tissue between short implants and implant-supported crowns with different heights. Two models were made using the programs InVesalius 3.0, Rhinoceros 4.0 and Solidworks 2010. The models were established from a bone block with the short implant (3.75 x 8.5 mm) with geometry Morse taper connection (MT). The height of the crown (cemented) was set at 10.0 mm and 15.00 mm. The models were processed by programs and 10 NEiNastran Femap 10.0. The force applied was 200N (vertical) and 100N (oblique). The results were plotted on maps Voltage Maximum Principal. Statistical analysis was performed using ANOVA. The results showed that the increase in crown height, increased stress concentration in the crown of 15 mm under oblique loading (p <0.001), the oblique loading has significantly expanded the area of stress concentration (p <0.001). Conclusion:the increase of the crown increased the stress concentration, being statistically significant for short implants Morse taper. The mesial and distal region had the highest concentration of stresses under oblique loading. The oblique loading was more harmful when compared with axial loading, being statistically significant.
Resumo:
Objective: the aim of this study was to evaluate the influence of occlusal veneering material in single fixed implant-supported crowns through the 3-D finite element method. Material and methods: Four models were fabricated using the Rhinoceros 4.0, SolidWorks, and InVesalius softwares. Each model represented a block of mandibular bone with an external hexagon implant of 5 mm x 10 mm and different veneering materials including NiCr (1), porcelain (2), composite resin (3), and acrylic resin (4). An axial load of 200 N and an oblique load of 100 N were applied. Results: model (2) with porcelain veneering presented a lower stress concentration for the NiCr framework, followed by the composite resin and acrylic resin. The stress distribution to the implant and bone tissue was similar for all models. Conclusions: there is no difference of stress distribution to the implant and supporting structures by varying the veneering material of a single implant-supported prosthesis.
Resumo:
The aim of this study was to evaluate the influence of implant angulation and abutment type (UCLA and Estheticone) on stress distribution in screw-retained implant-supported prostheses through photoelasticity. Three models were fabricated with photoelastic resin PL-2 (Vishay, Micro-Measurements Group, Inc Raleigh, N.C., USA) containing one external hexagon implant with 3.75x10mm (Master screw, Conexão Sistemas de Prótese Ltda., Arujá, São Paulo) with 0°, 17° and 30° degrees and a screw-retained prostheses with UCLA and Estheticone abutments. The assembly was positioned in a circular polariscope; axial and oblique (45° degrees) loads of 100N were applied in fixed points on the occlusal crown surfaces by a universal testing machine. The stress generated was photographed and analyzed qualitatively with appropriate software (Adobe Photoshop®). The results demonstrated the same number of fringes for both abutment types for each angulation, with fringes increasing in the same way. A higher number of fringes were closer in the oblique loading mode. It was concluded that there was no significant difference in stress distribution in prostheses with UCLA and Estheticone abutments. Higher stress concentrations were observed with increased implant angulation. Stress concentration and intensity were higher in the oblique load than in axial load application.
Resumo:
Objective: the aim of this study was to evaluate the influence of occlusal veneering material in single fixed implant-supported crowns through the 3-D finite element method. Material and methods: Four models were fabricated using the Rhinoceros 4.0, SolidWorks, and InVesalius softwares. Each model represented a block of mandibular bone with an external hexagon implant of 5 mm x 10 mm and different veneering materials including NiCr (1), porcelain (2), composite resin (3), and acrylic resin (4). An axial load of 200 N and an oblique load of 100 N were applied. Results: model (2) with porcelain veneering presented a lower stress concentration for the NiCr framework, followed by the composite resin and acrylic resin. The stress distribution to the implant and bone tissue was similar for all models. Conclusions: there is no difference of stress distribution to the implant and supporting structures by varying the veneering material of a single implant-supported prosthesis.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of the present study was to investigate the effect of chlorhexidine at subinhibitory concentration (50% minimal inhibitory concentration (MIC)) on the growth, cytolysin expression and phagocytosis of Streptococcus agalactiae ATCC 13813. Bacterial growth with and without chlorhexidine treatment was monitored by turbidity measurements, and exocytolysins were estimated by neutral red uptake assay by the McCoy cell line. The phagocytic process was evaluated using luminol-enhanced chemiluminescence to follow the respiratory burst of polymorphonuclear neutrophils exposed to bacteria. Chlorhexidine-treated culture did not exhibit a detectable decrease in cell growth, and no statistically significant reduction in the respiratory burst of polymorphonuclear neutrophils was observed. However, growth in the presence of chlorhexidine resulted in a significant reduction of S. agalactiae exocytolysins. Although 50% MIC of chlorhexidine did not interfere with S. agalactiae growth and phagocytosis, the knowledge that this concentration was still able to alter some bacterial virulence parameters may be useful in its therapeutic applications. (c) 2006 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A number of attempts have been made to obtain a clear definition of biological stress. However, in spite of the efforts, some controversies on the concept of plant stress remain. The current versions are centered either on the cause (stress factor) or on the effect (stress response) of environmental stress. The objective of this study was to contribute to the definition of stress, using a hierarchical approach. Thus, we have performed an analysis of the most usual stress concepts and tested the relevance of considering different observation scales in a study on plant response to water deficit. Seedlings of Eucalyptus grandis were grown in vitro at water potentials ranging from -0.16 to -0.6 MPa, and evaluated according to growth and biochemical parameters. Data were analyzed through principal component analysis (PCA), which pointed to a hierarchical organization in plant responses to environmental disturbances. Growth parameters (height and dry weight) are more sensitive to water deficit than biochemical ones (sugars, proline, and protein), suggesting that higher hierarchical levels were more sensitive to environmental constraints than lower hierarchical ones. We suggest that before considering an environmental fluctuation as stressful, it is necessary to take into account different levels of plant response, and that the evaluation of the effects of environmental disturbances on an organism depends on the observation scale being used. Hence, a more appropriate stress concept should consider the hierarchical organization of the biological systems, not only for a more adequate theoretical approach, but also for the improvement of practical studies on plants under stress.
Resumo:
An experimental and theoretical study on the piezoelectric behaviour of PZT doped with a range of calcium ion concentrations is presented. A systematic study of the effect on the piezoelectric properties of PZT doped with various concentrations of CaO at constant sintering temperature and sintering time was carried out. The remanent polarization, planar coupling factor and frequency-thickness constant increase with calcium concentration. Ab initio perturbed ion calculations show that the lattice energy decreases with calcium addition for both tetragonal and rhombohedral phases of PZT.
Resumo:
The aim of the present study was to assess the heat tolerance of animals of two Portuguese (Alentejana and Mertolenga) and two exotic (Frisian and Limousine) cattle breeds, through the monitoring of physiological acclimatization reactions in different thermal situations characterized by alternate periods of thermoneutrality and heat stress simulated in climatic chambers. In the experiment, six heifers of the Alentejana, Frisian and Mertolenga breeds and four heifers of the Limousine breed were used. The increase in chamber temperatures had different consequences on the animals of each breed. When submitted to heat stress, the Frisian animals developed high thermal polypnea (more than 105 breath movements per minute), which did not prevent an increase in the rectal temperature (from 38.7 degrees C to 40.0 degrees C). However, only a slight depression in food intake and in blood thyroid hormone concentrations was observed under thermal stressful conditions. Under the thermal stressful conditions, Limousine animals decreased food intake by 11.4% and blood triiodothyronine (T3) hormone concentration decreased to 76% of the level observed in thermoneutral conditions. Alentejana animals had similar reactions. The Mertolenga cattle exhibited the highest capacity for maintaining homeothermy: under heat stressful conditions, the mean thermal polypnea increased twofold, but mean rectal temperature did not increase. Mean food intake decreased by only 2% and mean T3 blood concentration was lowered to 85,6% of the concentration observed under thermoneutral conditions. These results lead to the conclusion that the Frisian animals had more difficulty in tolerating high temperatures, the Limousine and Alentejana ones had an intermediate difficulty, and the Mertolenga animals were by far the most heat tolerant.