185 resultados para Sol-gel methods


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sols produced by admixture of ZrOCl2 acidified solutions to hot H2SO4 aqueous solutions were studied to clarify the effects of Cl- and SO42- ions on the kinetic stability of nanoparticles and to obtain some new evidence concerning the mechanism of a thermoreversible sol-gel transition observed in this system. The study of suspensions prepared with different molar ratios R-S = [Zr]/[SO42-] and R-Cl = [Zr]/[Cl-] revealed domains of composition of formation of thermoreversible gels, thermostable sols, and powder precipitation. The effects of R-S and R-Cl on the structural features of nanoparticles and on the particle solution interface were systematically analyzed for samples of thermoreversible and thermostable sol domains. Small-angle X-ray scattering measurements revealed the presence of small fractal aggregates in all samples of thermoreversible domains, while compact packing aggregates of primary particles are present in the thermostable sol. Extended X-ray absorption fine structure and elemental chemical analysis revealed that irrespective of the nominal value of R-S and R-Cl all studied samples of the thermoreversible domain are constituted by a well-defined compound possessing an inner core made of hydroxyl and oxo groups bridging together zirconium atoms surrounded on the surface by complexing sulfate ligands. zeta potentials of powders extracted by freeze-drying from the thermoreversible gel revealed a point of surface charge inversion attributed to the specific adsorption of SO42- ion. Thermoreversible gel formation is rationalized by considering the effect of the specific adsorption on the electrical double-layer repulsion together with the temperature dependency of the physical chemical properties of ions in solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sols prepared by mixing a ZrOCl2 acidified solution to a hot H2SO4 aqueous solutions were studied in order to clarify the mechanism of thermoreversible sol-gel transition observed in this system. The viscoelastic properties of these suspensions were analyzed during the sol-gel transition by dynamic rheological measurements and quasi-elastic light scattering. The rheological properties were correlated to mass fractal and nearly linear growth models, and percolation theory. The results evidence that the thermoreversible sol-gel transition in this system is due to the formation of a network of physically linked aggregates having fractal structure. The decrease of the SO42- contents in the initial solution leads to the decrease of the fractal dimensionality from 2.3 to 1.8, indicating a change of the kinetic mechanism of aggregate growth. Near the gel point these samples have the typical scaling expected from percolation theory. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aware of the difficulties in applying sol-gel technology on the preparation of thin films suitable for optical devices, the present paper reports on the preparation of crack-free erbium- and ytterbium-doped silica: hafnia thick films onto silica on silicon. The film was obtained using a dispersion of silica-hafnia nanoparticles into a binder solution, spin-coating, regular thermal process and rapid thermal process. The used methodology has allowed a significant increase of the film thickness. Based on the presented results good optical-quality films with the required thickness for a fiber matching single mode waveguide were obtained using the erbium- and ytterbium-activated sol-gel silica:hafnia system. The prepared film supports two transversal electric modes at 1550 nm and the difference between the transversal electric mode and the transversal magnetic mode is very small, indicating low birefringence. Photoluminescence of the I-4(13/2) -> I-4(15/2) transition of erbium ions shows a broad band centered at 1.53 mu m with full width at a half maximum of 28 nm. Up-conversion emission was carried out under different pump laser powers, and just one transition at red region was observed. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to improve the chemical resistance of zirconium fluoride glass a protective transparent SnO2 layer was deposited by the solgel dip-coating process in the presence of Tiron (R) as particle surface modifier agent. After water immersion for different periods of time, both coated and non-coated fluoride glasses were analyzed by scanning electron microscopy, mass loss evaluation, infrared spectroscopy and X-ray photoelectron spectroscopy. In contrast to the effects occurring for non-coated glass, where the surface undergoes a rapid selective dissolution of the most soluble species, the results for the SnO2-coated glass showed that the filling of the film nanopores by dissolved glass material results in a hermetic barrier protecting the glass surface. The selective glass dissolution was confirmed by liquid chromatography measurements of the etching solution after each exposure time. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes particle aggregation process during gelation of SnO2 hydrosols. The effect of the concentration of SnO2 colloidal particles on the kinetics of gelation of hydrosols containing PVA (poly(vinyl alcohol)) was analysed by dynamic rheological measurements. The complex viscosity and the storage and loss moduli have been measured during the sol-gel transition and the results correlated to mass fractal growth, nearly linear growth models, and scalar percolation theory. The analysis of the experimental results shows that a linear aggregation occurs in the initial step of the gelation followed by a fractal growth to form a three-dimensional network. Near the gel point this physical gel exhibits the typical scaling expected from an electrical percolation analogy. (C) 1999 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study answers several pending questions about alumina-catalyzed epoxidation with aqueous 70 wt% H2O2. To evaluate the effect of the water-to-aluminum tri-sec-butoxide molar ratio, this was systematically changed from 1 to 24. The xerogels were calcined at 450 degrees C and gave different gamma-Al2O3's with distinct textural and acidic properties. A combination of Al-27 MAS NMR and TPD-NH3 results of calcined aluminas allowed us to assign the type la. Al-OH sites as the catalytic sites for epoxidation. The type Ib Al-OH sites have no function in catalytic epoxidation, because ethyl acetate poisons these sites. The strong acid sites of types IIa, IIb, and III Al-OH groups are responsible for the undesired H2O2 decomposition and decreased oxidant selectivity. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aluminum doped zinc oxide polycrystalline thin films (AZO) were prepared by sol-gel dip-coating process. The sol was prepared from an ethanolic solution of zinc acetate using lithium hydroxide or succinic acid as hydrolytic catalyst. The quantity of aluminum in the sol was varied from 1 to 10 mol%. The structural characteristics studied by X-ray diffractometry were complemented by resistivity measurements and UV-Vis-NIR spectroscopy. The films are transparent from the near ultraviolet to the near infrared, presenting an absorption cut-off at almost 290 nm, irrespective of the nature of the catalyst and doping level. The best conductors were obtained for the AZO films containing 3 mol% of aluminum, prepared under acidic and basic catalysis and sintered at 450 degreesC. Their optical band-gap of 4.4 eV calculated from the absorption cut-off is larger than the values for band-gap widening predicted by the standard model for polar semiconductors. These polycrystalline films are textured with preferential orientation of grains along the wurtzite c-axis or the (100) direction. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work describes optimized conditions for preparation of a cobalt complex entrapped in alumina amorphous materials in the form of powder. The hybrid materials, CoNHG, were obtained by a nonhydrolytic sol-gel route through condensation of aluminum chloride with diisopropylether in the presence of cobalt chloride. The materials were calcined at various temperatures. The presence of cobalt entrapped in the alumina matrix is confirmed by ultraviolet visible spectroscopy. The materials have been characterized by X-ray diffraction (XRD), surface area analysis, thermogravimetric analysis (TGA), differential thermal analyses (DTA) and transmission electron microscopy (TEM). The prepared alumina matrix materials are amorphous, even after heat treatment up to 750 degreesC. The XRD, TGA/DTA and TEM data support the increase of sample crystallization with increasing temperature. The specific surface area, pore size and pore diameter changed as a function of the heat treatment temperature employed. Different heat treatment temperatures result in materials with different compositions and structures, and influence their catalytic activity. The entrapped cobalt materials calcined at 750 degreesC efficiently catalyzed the epoxidation of (Z)-cyclooctene using iodozylbenzene as the oxygen donor. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pt-modified SnO2 electrodes were prepared onto titanium substrates in the form of thin films of similar to2 mum at different temperatures in the range from 200 to 400degreesC. Surface morphology was examined by scanning electron microscopy (SEM). It was found that Pt-SnO2 sol-gel layers are significantly rough and have a low porosity. X-ray diffraction (XRD) studies showed that the films consist of Pt nanoparticles with average size varying from about 5 to 10 nm, depending on the preparation temperature, and amorphous tin oxide. X-ray photoelectron spectroscopy (XPS) was employed to determine the superficial composition of the electrodes and demonstrated the presence of Sn4+ in all the samples. XPS spectra of the Pt 4f electrons showed the presence of Pt in the zero-valence state as well as in ionic forms. The general electrochemical behavior was characterized by cyclic voltammetry in 1 mol l(-1) HClO4 and the electrocatalytic activity towards the oxidation of formaldehyde was investigated by potential sweeps and chronoamperometry. The results obtained show that the Pt-SnO2/Ti system exhibits a significant catalytic activity for the oxidation of formaldehyde, with an onset potential below 0.1 V. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrochemical lithium intercalation in thin films of CeO2-TiO2 and WO3, prepared by the sol-gel technique was investigated with cyclic voltammetry and spectroelectrochemical techniques in propylene carbonate solutions. A solid state system having the configuration WO3/Ormolyte/CeO2-TiO2 has been assembled. The solid electrolyte, an organically modified electrolyte (ormolyte), was prepared with different [O]/[Li] ratios. The transmittance variation of this system during a potentiostatic step from -0.7 V to 0.8 V was about 35% at 550 nm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work reports on the preparation of erbium and ytterbium co-doped SiO2:HfO2 single mode planar waveguides using the sol-gel method. Silica nanoparticles were prepared from tetraethylorthosilicate in basic media and the films were characterized by transmission electron microscopy, scanning electron microscopy, mechanical profilometry, M-lines spectroscopy based on prism coupling technique, X-ray diffractometry, infrared spectroscopy and photoluminescence spectroscopy. The film thicknesses and the refractive indexes were adjusted in order to satisfy a future efficient coupling to single mode optical fiber. Films suitable for both weak and strong light confinement were prepared varying hafnia concentration into the silica matrix. The lifetime values of erbium I-4(13/2) state were measured in order to investigate the influence of clustering and hydroxyl groups on the fluorescence quantum efficiency of the I-4(13/2) level, responsible for the emission at 1.55 mu m attributed to the I-4(13/2) -> I-4(15/2) transition. The high lifetime values suggest the absence of erbium clusters and the elimination of hydroxyl groups by rapid thermal process. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eu3+ and Tm3+ doped lanthanum fluoride and lanthanum oxyfluoride are obtained from Eu3+, Tm3+ containing lanthanum fluoracetate solutions. The nature of the crystal phase obtained could be controlled by the temperature of heat treatment. Spectral characteristics of Eu3+ doped crystal phases were sufficiently different to allow utilization of Eu3+ as structural probes. Tm3+ emission at the technologically important spectral region of 1450nm could be observed for the fluoride and oxyfluoride crystal phases. The large bandwidth obtained (around 120nm) suggests potential applications in optical amplification. SiO2-LaF3-LaOF composite materials were also prepared. It is observed that for heat treatments above 800degreesC, fluorine loss, probably in the form of SiF4 hinder the observation of Tm3+ emission. Eu3+ spectroscopic characteristics clearly show the evolution of a fluoride like environment to an amorphous oxide one as the temperature of heat treatment increased. Thin films obtained by dip-coating on V-SiO2 substrates and treated at 300degreesC, 500degreesC and 800degreesC display guided modes in the visible and infrared regions. Optical characteristics (refractive index and films thickness) were obtained at 543.5, 632.8 and 1550nm. Attenuation as low as 1.8dB/cm was measured at 632.8nm. (C) 2004 Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we investigate the effect of hydrochloric acid (HC) addition on the structure and thermal and magnetic properties of iron-doped siloxane-polyoxyethylene (POE) hybrids prepared by the sol-gel route. X-ray powder diffraction (XRD) and X-ray absorption near edge structure (XANES) results reveal the dominance of ferrihydrite nanoparticles and a mixture of this phase with FeCl4- species in the hybrid prepared without and with HCl, respectively. Thermal analysis reveals the existence of two crystalline polymeric phases in the hybrid prepared with HCl whereas hybrids prepared without HCl are amorphous. The 105 and 60 Angstrom sized ferrihydrite nanoparticles were detected by SAXS analysis of the composite prepared without and with HCl, respectively. The magnetic results suggest that in both samples antiferromagnetic nanoparticles coexist with small clusters/isolated ions. In the sample without HCl addition, larger particles dominate the magnetic behavior, while the opposite occurs for the sample prepared using HCl catalyst. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The X-ray reflectivity technique was applied in the study of tin oxide films deposited by sol-gel dip-coating on borosilicate glasses. The influence of the withdrawal speed and temperature of thermal treatment on the film structure was analyzed. We have compared the thermal evolution of the density and the shrinkage of the films with these properties measured for the monolithic xerogel by helium picnometry and thermomechanical analysis. In agreement with the Landau-Levich model, the layer thickness increases by increasing the withdrawal speed. Nevertheless, it decreases with the increase of the thermal treatment temperature, due to the densification process. The values of apparent density are smaller than the skeletal density, which shows that the films are porous. The comparison between the film and the monolith indicates that shrinkage during firing is anisotropic, occurring essentially perpendicular to the coating surface.