151 resultados para Semideciduous seasonal forest
Resumo:
In an area of tropical seasonal semideciduous forest, the soil characteristics, floristic composition, physiognomic structure, and the distribution of three regeneration and three dispersal guilds were studied for four stands within the forest that had documented histories of varying degrees of human disturbance. The aim was to study forest regeneration in areas of preserved forest and secondary forest, with parts of both types of forest experiencing either 'intensive' or 'occasional' cattle trampling. The study was carried out in the Sebastiao Aleixo da Silva Ecological Station, Bauru, São Paulo State, Brazil. Two stands were called 'secondary' because they corresponded to forest tracts that were felled and occupied by crops and pastures in the past and then abandoned to forest regeneration ca. 40 years before this study. The other two stands, called 'preserved', corresponded to areas of the fragment where the forest has been maintained with only minor human impacts. The arboreal component of the tree community (diameter at breast height or dbh greater than or equal to 5 cm) was sampled in 20 plots of 40 m x 40 m, and the subarboreal component (diameter at the base of the stem or dbs < 5 cm and height greater than or equal to 0.5 m) in subplots of 40 m x 2 m. Physiognomic features, such as canopy height and density of climbing plants, were registered all over a 5 m x 5 m gridline laid on the sample plots. Soil bulk samples were collected for chemical and textural analyses. Most detected differences contrasted the secondary to the preserved forest stands. The soils of the secondary stands showed higher proportions of sand and lower levels of mineral nutrients and organic matter than those of the preserved stands, probably due to higher losses by leaching and erosion. Compared to the secondary stands, the preserved ones had higher proportions of tall trees, higher mean canopy height, lower species diversity, higher abundance of autochorous and shade-tolerant climax species, and lower abundance of pioneer and light-demanding climax species. Despite the high proportion of species shared by the preserved and secondary stands (108 out of 139), they differed consistently in terms of density of the most abundant species. on the other hand, the secondary and preserved stands held similar values for tree density and basal area, suggesting that 40 years were enough to restore these features. Effects of cattle trampling on the vegetation were detected for the frequency of trees of anemochorous and zoochorous species, which were higher in the stands under occasional and intensive cattle trampling, respectively. The density of thin climbers was lower in the stands with intensive trampling. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Exotic species are used to trigger facilitation in restoration plantings, but this positive effect may not be permanent and these species may have negative effects later on. Since such species can provide a marketable product (firewood), their harvest may represent an advantageous strategy to achieve both ecological and economic benefits. In this study, we looked at the effect of removal of a non-native tree species (Mimosa caesalpiniifolia) on the understory of a semideciduous forest undergoing restoration. We assessed two 14-year-old plantation systems (modified taungya agroforestry system; and mixed plantation using commercial timber and firewood tree species) established at two sites with contrasting soil properties in São Paulo state, Brazil. The experimental design included randomized blocks with split plots. The natural regeneration of woody species (height ≥0.2 m) was compared between managed (all M. caesalpiniifolia trees removed) and unmanaged plots during the first year after the intervention. The removal of M. caesalpiniifolia increased species diversity but decreased stand basal area. Nevertheless, the basal area loss was recovered after 1 year. The management treatment affected tree species regeneration differently between species groups. The results of this study suggest that removal of M. caesalpiniifolia benefited the understory and possibly accelerated the succession process. Further monitoring studies are needed to evaluate the longer term effects on stand structure and composition. The lack of negative effects of tree removal on the natural regeneration indicates that such interventions can be recommended, especially considering the expectations of economic revenues from tree harvesting in restoration plantings.
Resumo:
The influence of a population of the understorey woody bamboo Merostachys riedeliana and different flooding regimes on tree community dynamics in a section of tropical semideciduous forest in South-Eastern Brazil was examined. A forest section with an area of 1.6 ha composed of 71 adjacent plots was located on a slope ending at the river margin. The section was divided into five topographical sectors according to the mean duration of river floods. In 1991 and 1998 all trees with a diameter at the base of the trunk greater than or equal to 5 cm were measured, identified and tagged, and all live bamboo culms were counted. Annualised estimates of the rates of tree mortality and recruitment, gain and loss of tree basal area, and change in bamboo density were calculated for each of the 71 plots and five topographical sectors as well as for diameter classes and tree species. To segregate patterns arising from spatially autocorrelated events, geostatistical analyses were used prior to statistical comparisons and correlations. In general, mortality rates were not compensated by recruitment rates but there was a net increase in basal area in all sectors, suggesting that the tree community as a whole was in a building phase. Tree community dynamics of the point bar forest (Depression and Levee sectors) differed from that of the upland forest (Ridgetop, Middle Slope and Lower Slope sectors) in the extremely high rates of gain in basal area. The predominant and specialised species, Inga vera and Salix humboldtiana, are probably favoured by relaxed competition in an environment stressed by long-lasting floods. In the upland forest, mortality rates were highest at the Middle Slope, particularly for smaller trees, while recruitment rates were lowest. As bamboo clumps were concentrated in this sector, the locally higher instability in the tree community probably resulted from the direct interference of bamboos. The density of bamboo culms in the upland forest was negatively correlated with the rates of tree recruitment and gain in basal area, and positively correlated with tree mortality rates. Bamboos therefore seemed to restrict the recruitment, growth and survival of trees.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Diet of buffy tufted-eared marmosets (Callithrix aurita) in a forest fragment in southeastern Brazil
Resumo:
The feeding ecology of the Atlantic forest marmosets (Callithrix spp.) in southeastern Brazil is poorly known, and few studies have focused on buffy tufted-eared marmosets, Callithrix aurita. We determined the food items and investigated the seasonal variation in the diet of a group of four Callithrix aurita in a 17-ha semideciduous forest fragment in southern Minas Gerais State, Brazil. We recorded daily feeding activities between October 1994 and September 1995 using scan sampling at 5-min intervals. The marmosets devoted feeding rime to gums (50.5%), fruits (11%), and animal prey (38.5%) in a fetal of 499 records. Plant resources comprised 27 species from 16 families. They used Acacia paniculata (Mimosoideae, Leguminosae), the main gum source (82%), year-round Maclura tinctoria (Moraceae) was the fruit species that they consumed most (22%). The marmosets preyed on caterpillars (33%), katydids (5%), and homopterans (4%). Feeding on fruits varied seasonally and was inversely related to gum feeding. Consumption of animal prey remained constant over the year. The wide and year-round dependence on gum suggests that Acacia may play a critical role in marmoset persistence in forest fragments.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The reproductive phenology of the entire climber community (96 species of lianas and 40 species of vines) in a semideciduous forest in Southeastern Brazil (22 degrees 49'45''S; 47 degrees 06'33''W and 670 m altitude) was observed from March 1988 to February 1991. Phenological observations were made weekly by walking along a 10.5 km trail in the interior and at the forest edges of the Santa Genebra Reserve (SGR). The most species-rich families of climbers were Bignoniaceae (22), Malpighiaceae (17), Sapindaceae (12) and Asteraceae (12). Flowering patterns for woody lianas and herbaceous vines differed. Lianas had two flowering peaks: a minor peak in March in the transition from wet to dry season, and a major peak in October during the transition from dry to wet season. The flowering peak for herbaceous vines was in April. Fruiting of lianas was highly seasonal, with one peak in the late dry season (July-August). Fruiting for vines was less seasonal with a slight peak in March. These differences were consistent with the predominance of wind-dispersed fruits among lianas (72% of species) versus vines (52%). Low rainfall, high leaf fall, and strong winds during the dry season favor wind dispersal. More species of vines (40%) have animal-dispersed seeds than lianas (19%), and most vines fruited during the wet season. Phenological patterns of climbers and trees and treelets at SGR differed. The life form of lianas and their system of reserve economy may allow them to reproduce during periods unfavorable to trees. Displacement of peak flowering periods of trees and climbers pollinated by bees and small generalist insects may decrease competition for pollen vectors among species of these two groups of plants. Whereas the fruiting patterns of wind-dispersed trees and climbers at SGR were similar (most species fruiting during the dry season), animal-dispersed trees and treelets fruited throughout the year while animal-dispersed climbers exhibited a pronounced peak in late wet season. The distinct phenological patterns of climbers, generally complementary to those presented by trees, resulted in constant availability of Bowers and fruits throughout the year and enhances the importance of this plant group in Neotropical forests.
Resumo:
Among 89 plants species growing in a subtropical dry forest fragment located in Botucatu, State of São Paulo, Brazil, 35 species were cut by Atta sexdens, representing 39.34% of the current plants existing in this area. A. sexdens L., 1758 (Hymenoptera: Formicidae) has a selective preference for the following species: Alchornea triplinervia, Faramea cyanea, Cariniana estrellensis and Casearea obliqua, with the first being the most cut species. The frequency and absolute densities of the plant families and species significantly influence the selection process. When comparing the absolute frequency regarding the 10 most cut plant species and the cutting frequency, significant data were obtained only for the euphorbiaceous A. triplinervia species, proving the preference of A. sexdens for this species in particular. These interactions are discussed based on ecological and management factors in agro-ecosystems.
Resumo:
Habitat fragmentation is the main cause of biodiversity loss, as remnant fragments are exposed to negative influences that include edge effects, prevention of migration, declines in effective population sizes, loss of genetic variability and invasion of exotic species. The Drosophilidae (Diptera), especially species of the genus Drosophila, which are highly sensitive to environmental variation, have been used as bioindicators. A twelve-month field study was conducted to evaluate the abundance and richness of drosophilids in an edge-interior transect in a fragment of semideciduous forest in São Paulo State, Brazil. One objective of the study was to evaluate the applied methodology with respect to its potential use in future studies addressing the monitoring and conservation of threatened areas. The species abundance along the transect showed a clear gradient, with species associated with disturbed environments, such as Drosophila simulans, Scaptodrosophila latifasciaeformis and Zaprionus indianus, being collected at the fragment edge and the species D. willistoni and D. mediostriata being found in the fragment's interior. Replacement of these species occurred at approximately 60 meters from the edge, which may be a reflection of edge effects on species abundance and richness because the species found within the habitat fragment are more sensitive to variations in temperature and humidity than those sampled near the edge. The results support the use of this methodology in studies on environmental impacts. © 2013 Penariol and Madi-Ravazzi; licensee Springer.
Resumo:
The ecology of forest and savanna trees species will largely determine the structure and dynamics of the forest-savanna boundaries, but little is known about the constraints to leaf trait variation imposed by selective forces and evolutionary history during the process of savanna invasion by forest species. We compared seasonal patterns in leaf traits related to leaf structure, carbon assimilation, water, and nutrient relations in 10 congeneric species pairs, each containing one savanna species and one forest species. All individuals were growing in dystrophic oxisols in a fire-protected savanna of Central Brazil. We tested the hypothesis that forest species would be more constrained by seasonal drought and nutrient-poor soils than their savanna congeners. We also hypothesized that habitat, rather than phylogeny, would explain more of the interspecific variance in leaf traits of the studied species. We found that throughout the year forest trees had higher specific leaf area (SLA) but lower integrated water use efficiency than savanna trees. Forest and savanna species maintained similar values of predawn and midday leaf water potential along the year. Lower values were measured in the dry season. However, this was achieved by a stronger regulation of stomatal conductance and of CO2 assimilation on an area basis (A area) in forest trees, particularly toward the end of the dry season. Relative to savanna trees, forest trees maintained similar (P, K, Ca, and Mg) or slightly higher (N) leaf nutrient concentrations. For the majority of traits, more variance was explained by phylogeny, than by habitat of origin, with the exception of SLA, leaf N concentration, and A area, which were apparently subjected to different selective pressures in the savanna and forest environments. In conclusion, water shortage during extended droughts would be more limiting for forest trees than nutrient-poor soils. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)