106 resultados para Seasonal anestrus


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We surveyed social wasps (Polistinae) present in forest fragments of northwest of So Paulo state with different surroundings composed of a matrix of citrus crops and sugarcane in the expectation that the former matrix would be more diverse than the latter. We collected specimens actively using attractive liquids. We obtained 20 species in Magda, 13 in Bebedouro, 13 in Mato, and 19 in Barretos. The most common genus was Agelaia in all of the areas. The greatest Shannon-Wiener index of diversity was obtained in Magda (H' = 2.12). Species such as Brachygastra moebiana, Metapolybia docilis, Mischocyttarus ignotus, M. paulistanus and M. consimilis had not been recorded on recent surveys in the state. Furthermore M. consimilis is a new record for the state. We concluded that, with our data, a relation between the occurrence of social wasps and the surrounding matrix was not detected. © 2011 Getulio Minoru Tanaka Junior and Fernando Barbosa Noll.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In vertebrate species, testosterone seems to inhibit spermatogonial differentiation and proliferation. However, this androgen can also be converted, via aromatase, into estrogen which stimulates spermatogonial differentiation and mitotic activity. During seasonal spermatogenesis of adult bullfrogs Lithobates catesbeianus, primordial germ cells (PGCs) show enhanced testosterone cytoplasm immunoexpression in winter; however, in summer, weak or no testosterone immunolabelling was observed. The aim of this study was to confirm if PGCs express stem cell markers-alkaline phosphatase (AP) activity and GFRα1 (glial-cell-line-derived neurotrophic factor)-and verify whether testosterone is maintained in these cells by androgen receptors (ARs) and/or sex hormone-binding globulin (SHBG) in winter. Furthermore, regarding the possibility that testosterone is converted into estrogen by PGCs in summer, the immunoexpression of estrogen receptor (ER)β was investigated. Bullfrog testes were collected in winter and in summer and were embedded in glycol methacrylate for morphological analyses or in paraffin for the histochemical detection of AP activity. GFRα1, AR, SHBG and ERβ expression were detected by Western blot and immunohistochemical analyses. The expression of AP activity and GFRα1 in the PGCs suggest that these cells are spermatogonial stem cells. In winter, the cytoplasmic immunoexpression of ARs and SHBG in the PGCs indicates that testosterone is maintained by these proteins in these cells. The cytoplasmic immunoexpression of ERβ, in summer, also points to an ER-mediated action of estrogen in PGCs. The results indicate a participation of testosterone and estrogen in the control of the primordial spermatogonia during the seasonal spermatogenesis of L. catesbeianus. © 2012 S. Karger AG, Basel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bullfrog stem spermatogonia, also named primordial germ cells (PGCs), show strong testosterone immunolabeling in winter, but no or weak testosterone immunoexpression in summer. Thus, the role of testosterone in these cells needs to be clarified. In this study, we proposed to evaluate whether PGCs express aromatase and estrogen receptors, and verify a possible role of estrogen in PGCs seasonal proliferation. Testes of male adult bullfrogs, collected in winter (WG) and summer (SG), were fixed and embedded in historesin, for quantitative analysis, or paraffin for immunohistochemistry (IHC). The number of haematoxylin/eosin stained PGCs/lobular area was obtained. Proliferating cell nuclear antigen (PCNA), aromatase, estrogen receptor β (ERβ) and PCNA/ERβ double immunolabeling were detected by IHC. The number of PCNA-positive PGCs and the histological score (HSCORE) of aromatase and ERβ immunolabeled PGCs were obtained. Although the number of PGCs increased significantly in WG, a high number of PCNA-positive PGCs was observed in summer. Moreover, aromatase and ERβ HSCORE was higher in SG than WG. The results indicate that PGCs express a seasonal proliferative activity; the low mitotic activity in winter is related to the maximal limit of germ cells which can be supported in the large lobules. In SG, the increased ERβ and aromatase HSCORE suggests that testosterone is converted into estrogen from winter to summer. Moreover, the parallelism between the high PGCs mitotic activity and ERβ immunoexpression suggest a participation of estrogen in the control of the PGCs seasonal proliferative activity which guarantee the formation of new germ cysts from summer to next autumn. © 2012 Elsevier Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies to determine mite species richness in natural environments are still scarce, and have been conducted mainly in tropical ecosystems. The aim of this study was to determine the species richness of mites on two common native plants in fragments of the semideciduous seasonal forest in the Northwest of São Paulo State, Brazil. In each of eight fragments, 10 specimens of Actinostemon communis (Euphorbiaceae) and 10 of Trichilia casaretti (Meliaceae) were selected and marked. In total, 124 species of mites belonging to 21 families were found on the two plants. Tarsonemidae had the highest diversity (34 species), followed by Phytoseiidae (31), Tetranychidae (9) and Tenuipalpidae (8). Species accumulation curves for the two sampled plants did not reach an asymptote, even with the large sampling effort. Hence, it is estimated that a greater sampling effort may lead to an increase in species richness compared with what was found in this study. The richness of this mite fauna suggests that preservation of these plant species is important to maintain the mite diversity in these forest fragments. © 2013 Taylor & Francis Group, LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ecology of forest and savanna trees species will largely determine the structure and dynamics of the forest-savanna boundaries, but little is known about the constraints to leaf trait variation imposed by selective forces and evolutionary history during the process of savanna invasion by forest species. We compared seasonal patterns in leaf traits related to leaf structure, carbon assimilation, water, and nutrient relations in 10 congeneric species pairs, each containing one savanna species and one forest species. All individuals were growing in dystrophic oxisols in a fire-protected savanna of Central Brazil. We tested the hypothesis that forest species would be more constrained by seasonal drought and nutrient-poor soils than their savanna congeners. We also hypothesized that habitat, rather than phylogeny, would explain more of the interspecific variance in leaf traits of the studied species. We found that throughout the year forest trees had higher specific leaf area (SLA) but lower integrated water use efficiency than savanna trees. Forest and savanna species maintained similar values of predawn and midday leaf water potential along the year. Lower values were measured in the dry season. However, this was achieved by a stronger regulation of stomatal conductance and of CO2 assimilation on an area basis (A area) in forest trees, particularly toward the end of the dry season. Relative to savanna trees, forest trees maintained similar (P, K, Ca, and Mg) or slightly higher (N) leaf nutrient concentrations. For the majority of traits, more variance was explained by phylogeny, than by habitat of origin, with the exception of SLA, leaf N concentration, and A area, which were apparently subjected to different selective pressures in the savanna and forest environments. In conclusion, water shortage during extended droughts would be more limiting for forest trees than nutrient-poor soils. © 2013 Springer-Verlag Berlin Heidelberg.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Communication contributes to mediate the interactions between plants and the animals that disperse their genes. As yet, seasonal patterns in plant-animal communication are unknown, even though many habitats display pronounced seasonality e.g. when leaves senescence. We thus hypothesized that the contrast between fruit displays and their background vary throughout the year in a seasonal habitat. If this variation is adaptive, we predicted higher contrasts between fruits and foliage during the fruiting season in a cerrado-savanna vegetation, southeastern Brazil. Based on a six-year data base of fruit ripening and a one-year data set of fruit biomass, we used reflectance measurements and contrast analysis to show that fruits with distinct colors differed in the beginning of ripening and the peak of fruit biomass. Black, and particularly red fruits, that have a high contrast against the leaf background, were highly seasonal, peaking in the wet season. Multicolored and yellow fruits were less seasonal, not limited to one season, with a bimodal pattern for yellow ones, represented by two peaks, one in each season. We further supported the hypothesis that seasonal changes in fruit contrasts can be adaptive because fruits contrasted more strongly against their own foliage in the wet season, when most fruits are ripe. Hence, the seasonal variation in fruit colors observed in the cerrado-savanna may be, at least partly, explicable as an adaptation to ensure high conspicuousness to seed dispersers. © 2013 The Authors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The foraging activity of Geotrigona mombuca Smith, 1863 was studied under natural conditions aiming to verify the influence of seasonal changes on daily flight activity and annual cycle of the colony. Daily flight activity was monitored for a year based on the observation and counting of foragers leaving and entering the hive, as well as the kind of material transported and meteorological factors such as day time, temperature and relative humidity. The influence of seasonal changes was evidenced by alterations on daily rhythm of flight activity and by differences on transportation of food resources, building material and garbage. These data indicate that forager behavior is related to daily microclimate conditions and it is synchronized with the requirements of colony annual cycle, which determines an intense pollen collection in the summer. Thus, the recomposition of the intranidal population in spring and summer can be ensured, which is characterized both for a higher intensity of flight activity and increase in garbage and resin transport, as well as the swarming process in the spring. In this way, an action targeting the preservation or management of the species in a natural environment should consider that survival and reproduction of the colony depends greatly on the amount of available pollen in late winter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)