122 resultados para Screws
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Medicina Veterinária - FCAV
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Odontologia - FOA
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Purpose: To evaluate and compare the reliability of implant-supported single crowns cemented onto abutments retained with coated (C) or noncoated (NC) screws and onto platform-switched abutments with coated screws. Materials and Methods: Fifty-four implants (DT Implant 4-mm Standard Platform, Intra-Lock International) were divided into three groups (n = 18 each) as follows: matching-platform abutments secured with noncoated abutment screws (MNC); matching-platform abutments tightened with coated abutment screws (MC); and switched-platform abutments secured with coated abutment screws (SC). Screws were characterized by scanning electron microscopy and x-ray photoelectron spectroscopy (XPS). The specimens were subjected to step-stress accelerated life testing. Use-level probability Weibull curves and reliability for 100,000 cycles at 200 N and 300 N (90% two-sided confidence intervals) were calculated. Polarized light and scanning electron microscopes were used for fractographic analysis. Results: Scanning electron microscopy revealed differences in surface texture; noncoated screws presented the typical machining grooves texture, whereas coated screws presented a plastically deformed surface layer. XPS revealed the same base components for both screws, with the exception of higher degrees of silicon in the SiO2 form for the coated samples. For 100,000 cycles at 300 N, reliability values were 0.06 (0.01 to 0.16), 0.25 (0.09 to 0.45), and 0.25 (0.08 to 0.45), for MNC, MC, and SC, respectively. The most common failure mechanism for MNC was fracture of the abutment screw, followed by bending, or its fracture, along with fracture of the abutment or implant. Coated abutment screws most commonly fractured along with the abutment, irrespective of abutment type. Conclusion: Reliability was higher for both groups with the coated screw than with the uncoated screw. Failure modes differed between coated and uncoated groups.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this study was to perform a physicochemical and morphological characterization and compare the mechanical behavior of an experimental Ti-Mo alloy to the analogous metallic Ti-based fixation system, for mandibular angle fractures. Twenty-eight polyurethane mandibles were uniformly sectioned on the left angle. These were divided into 4 groups: group Eng 1P, one 2.0-mm plate and 4 screws 6 mm long; group Eng 2P, two 2.0-mm plates, the first fixed with 4 screws 6 mm long and the second with 4 screws 12 mm long. The same groups were created for the Ti-15Mo alloy. Each group was subjected to linear vertical loading at the first molar on the plated side in a mechanical testing unit. Means and standard deviations were compared with respect to statistical significance using ANOVA. The chemical composition of the Ti-15Mo alloy was close to the nominal value. The mapping of Mo and Ti showed a homogeneous distribution. SEM of the screw revealed machining debris. For the plates, only the cpTi plate undergoes a surface treatment. The metallographic analysis reveals granular microstructure, from the thermomechanical trials. A statistically significant difference was found (P < 0.05) when the comparison between both internal fixation techniques was performed. The 2P technique showed better mechanical behavior than 1P.
Resumo:
The connections in the wood structures are the places with high concentrations of stresses and therefore are more fragile than the rest of the structure. The connections between pieces of wood can be made by metal pins (nails or screws). The compression and embedment strength has significant influence on the calculation of the connections. The main aim of this work was to evaluate the compression and embedment strength in the directions parallel, inclined at 45° and normal to the grain, using standard specimens according to ABNT NBR 7190/1997 standard. The compression and embedment strength were initially evaluated according to ABNT NBR 7190/1997, which admits the deformation of 2‰ as limit of embedment and the ratio between the ultimate strength and the area of application of load in the specimen for the compressive strength. Afterward, the embedment strength was evaluated by the EUROCEDE 5 /1995 European standard, which use the limit of 5 mm of the displacement for the embedment. Specimens of Pinus oocarpa, Cumaru and Pinus taeda were used in tests to calibration of equipment and specimens of Pinus taeda and Eucalipto citriodora were used to compare the results of strength. The results of strength were evaluated based on statistical analysis. The results of compressive strength for the Pinus taeda showed no significant differences in embedment strength in the directions parallel and normal to the grain. For the Eucalipto citriodora only in the direction parallel to grain the compression strength was not significant compared with the embedment strength. For both species, only the parallel compression strength and inclined at 45o to the grain, which were to the grain, which were admitted the strain of 2‰ were not significantly different compared with the compression strength determined according to ABNT NBR 7190/1997. The normal compression strength obtained according to ABNT NBR 7190/1997 and ultimate compression strength not ...
Resumo:
The objective of this in vitro study was quantify the micro strain development around the internal hexagon implants, varying the type of prosthetic coping. For This reason, three implants of internal hexagon were inserted into one polyurethane block in line placement. Microunit abutments were screwed onto the implants. Tangentially the implants were bonded the strain gauges, two to the center implant. Ten structures, each one containing three copings were cast in Co-Cr alloy, that were divided into groups in the first group, plastic copings were used, and in the second group machined copings were used. The superstructure’s occlusal screws were tightened onto Microunit abutments with 10 Ncm torque, the magnitude of micro strain was recorded. The mean values of each strain gauge of each plastic copings were 363,37 ± 237,66 and the machined copings were 338,12 ± 223,01. The data were analyzed statistically by t- Student test. No statistically significant difference was found between the prosthetic copings (p= 0,867). It was concluded that to internal hexagon implants in line placement, the type of copings presented similar magnitude of micro strain after prosthetic occlusal screw was tightened