215 resultados para SMALL ANGLE SCATTERING
Resumo:
We have investigated, by in situ small-angle X-ray scattering (SAXS), the kinetics of formation of zinc oxide colloidal suspensions obtained after refluxing alcoholic solution of zinc acetate and catalysed by lithium hydroxide. The experimental results demonstrate that the suspensions are composed of colloidal spheroidal particles with a multimodal size distribution. The average radius of the main mode, approximately 2 nm, is invariant but the number of these basic particles continuously increases for increasing hydrolysis reaction time. The other two modes correspond to particles with average radii close to 6 and 10 nm, respectively. The larger particles are formed by coagulation of the smaller ones. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
In this work we report the effects of incorporation of variable amounts (0.5-25%w/w) of montmorillonite in poly(oxyethylene) based materials in order to decrease the polymer crystallinity. Two different classes of materials were studied: silica-poly(oxyethylene)-montmorillonite hybrids prepared by the sol-gel route and poly(oxyethylene)-montmorillonite nanocomposites prepared by mixing the dry clay or the clay aqueous suspension into the melt poly(oxyethylene). The effects of monternorillonite loading on the poly(oxyethylene) crystallization control and on the nanostructural features were investigated by X-ray powder diffraction, small-angle X-ray scattering and differential scanning calorimetry. Experimental results show that free montmorillonite layers coexist with open aggregates and tactoids in the poly(oxyethylene)-montmorillonite nanocomposites, with different features depending on the filler proportion and preparation route. The intercalation of polymer chains in montmorillonite galleries markedly hinders the crystallization of the poly(oxyethylene) matrix. For hybrids materials the silica phase favors the exfoliation of montmorillonite tactoids, so that samples are predominantly constituted by dispersed platelets. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The effect of acetylacetone (acac) complexing ligand on the formation and growth of tin oxide-based nanoparticles during thermohydrolysis at 70 degreesC of a tin precursor SnCl4-n(acac)(n) (0 less than or equal to n less than or equal to 2) solution was analyzed by in situ small-angle X-ray scattering. A. transparent and stable sol was obtained after 2 h of thermohydrolysis at 70 degreesC, allowing the quantitative determination of the particle volume distribution function and its variation with the reaction time. The number of colloidal particles for equivalent thermohydrolysis temperature and time decreases as the [acac]/[Sn] ratio in initial solution increases from 0.5 to 6. Instead, the amount of soluble species remaining in solution increases for increasing [acac]/[Sn] ratio within the same range. This indicates that increasing amounts of Sn-acetylacetone complexes partially prevent the hydrolysis and consequent formation of colloidal particles. The N-2 adsorption isotherm characterization of freeze-dried powders demonstrates that the average pore size is approximately equal to the average size (approximate to9 Angstrom) of the colloidal primary particles in the sol, and that the porosity and surface area (approximate to200 m(2) g(-1)) are independent of the acac content in the initial solution.
Resumo:
Xerogels obtained from the acid-catalyzed and ultrasound stimulated hydrolysis of TEOS were submitted to heat treatment at temperatures ranging from 60 to 1100 degreesC and studied by small-angle X-ray scattering (SAXS). The SAXS intensity as a function of the modulus of the scattering vector q was obtained in the range from q(0) = 0.19 to q(m) = 4.4 nm(-1). At 60 degreesC the xerogels exhibit an apparent surface fractal structure with a fractal dimension D-s similar to 2.5 in a length scale ranging from 1/q(1) similar to 1 to 1/q(m) similar to 0.22 nm. This structure becomes extremely rough at 120 degreesC (D-s similar to 3) and at 150 degreesC, it apparently converts to a mass fractal with a fractal dimension D similar to 2.4. This may mean an emptying of the pores with preservation of a share of the original mass fractal structure of the wet aged gel, for it had presented a mass fractal dimension D similar to 2.2. A well characterized porous structure formed by 2.0 nm mean size pores with smooth surface of about 380 m(2)/g is formed at 300 degreesC and remains stable until approximately 800 degreesC. At 900 degreesC the SAXS intensity vanishes indicating the disappearance of the pores in the probed length scale. The elimination of the nanopores occurs by a mechanism in which the number of pores diminishes keeping constant their mean size. The xerogels exhibit a foaming phenomenon above 900 degreesC and scatter following Porod's law as does a surface formed by a coarse structure. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Hybrid organic - inorganic nanocomposites doped with Fe-II and Fe-III ions and exhibiting interesting magnetic properties have been obtained by the sol - gel process. The hybrid matrix of these ormosils ( organically modified silicates), classed as di-ureasils and termed U( 2000), is composed of poly( oxyethylene) chains of variable length grafted to siloxane groups by means of urea crosslinkages. Iron perchlorate and iron nitrate were incorporated in the diureasil matrices, leading to compositions within the range 80 greater than or equal to n greater than or equal to 10, n being the molar ratio of ether-type O atoms per cation. The structure of the doped diureasils was investigated by small-angle X-ray scattering (SAXS). For Fe-II-doped samples, SAXS results suggest the existence of a two-level hierarchical structure. The primary level is composed of spatially correlated siloxane clusters embedded in the polymeric matrix and the secondary, coarser level consists of domains where the siloxane clusters are segregated. The structure of Fe-III-doped hybrids is different, revealing the existence of iron oxide based nanoclusters, identified as ferrihydrite by wide-angle X-ray diffraction, dispersed in the hybrid matrix. The magnetic susceptibility of these materials was determined by zero-field-cooling and field-cooling procedures as functions of both temperature and field. The different magnetic features between Fe-II- and Fe-III-doped samples are consistent with the structural differences revealed by SAXS. While Fe-II-doped composites exhibit a paramagnetic Curie-type behaviour, hybrids containing Fe-III ions show thermal and field irreversibilities.
Resumo:
The surface corrosion process associated with the hydrolysis of fluorozirconate glass, ZBLAN (53ZrF(4), 20BaF(2), 20NaF, 4LaF(2), 3AlF(3)) was investigated using X-ray photoelectron spectroscopy (XPS), grazing-incidence small angle X-ray scattering (GISAXS), X-ray reflectivity (XRR) and scanning electron microscopy (SEM). After a short exposure period (25 min) of the glass surface to deionized water the XPS data indicate an increase of the oxygen content accompanied by a decrease of fluorine concentration. The analysis of the chemical bonding structure identified the predominant surface reaction products as zirconium hydroxyfluoride and oxyfluoride species. The second most abundant glass component, bariumfluoride, remains almost unaffected by oxygen, while sodium fluoride is completely removed from the attacked surface region. The detected structural and compositional changes are related to the selective dissolution of the glass components leading to the formation of a new surface phase. This process is accompanied by a visible surface roughening caused by reprecipitated species, observed by SEM. The modification of the glass surface is responsible for an increase of the GISAXS intensity. The scattering was attributed to nanovoids formed at the surface region of the glass with an average size of 2.4 +/- 0.05 nm. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
New silica-polypropyleneglycol ormosils (organically modified silicates) with covalent bends between the organic (polymer) and inorganic (silica) phases have been prepared by the sol-gel process. Their structural evolution during sol formation, sol-gel transition, gel aging and drying has been studied in situ by small-angle X-ray scattering (SAXS). The experimental SAXS curves corresponding to sols and gels exhibit features expected from fractal objects. Clusters of size around 55 Angstrom with an initial fractal dimension D = 2.4 are formed in the sol. They are constituted of small primary silica particles chemically crosslinked at the end of the polymer chains. A strong liquid-like spatial correlation between the silica particles develops during drying due to the shrinkage of the polymeric network induced by water and ethanol evaporation. The continuous increase in SAXS intensity during drying, while the interparticle distance remains constant, is a consequence of the progressive growth of the dry fraction of the total volume. After drying, the gel structure consists of a rather compact arrangement of silica particles embedded in the polypropyleneglycol matrix.
Resumo:
Transparent, flexible, and luminescent EU3+-doped siloxane-poly(ethylene glycol) (PEG) nanocomposites have been obtained by the sol-gel process. The inorganic (siloxane) and organic PEG phases are usually linked by weak bonds (hydrogen bonds or van der Waals forces), and small-angle X-ray scattering (SAXS) measurements suggest that the structure of these materials consists of fractal siloxane aggregates embedded in the PEG matrix. For low Eu3+ contents, n = 300 and n = 80, the aggregates are small and isolated and their fractal dimensions are 2.1 and 1.7, respectively. These values are close to those expected for gelation mechanisms consisting of reaction-limited cluster-cluster aggregation (RLCCA) and diffusion-limited cluster-cluster aggregation (DLCCA). For high Eu3+ content, SAYS results are consistent with a two-level structure: a primary level of siloxane aggregates and a second level, much larger, formed by the coalescence of the primary ones. The observed increase in the glass transition temperature for increasing Eu3+ content is consistent with the structural model derived from SAXS measurements. Extended X-ray absorption fine structure (EXAFS) and luminescence spectroscopy measurements indicate that under the experimental conditions utilized here Eu3+ ions do not strongly interact with the polymeric phase.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The effect of lithium salt doping on the structure and ionic conduction properties of silica-polyethyleneglycol composites is reported. These materials, so called ormolytes (organically modified electrolytes), were obtained by the sol-gel process. They have chemical stability due to the covalent bonds between the inorganic (silica) and organic (polymer) phase. The structure of these hybrid materials was investigated by small-angle X-ray scattering (SAXS) as a function of lithium concentration [O]/[Li] (O being the oxygens of the ether type). The spectra have a well-defined peak attributed to the existence of a liquid-like spatial correlation of silica clusters. The ionic conductivity was studied by AC impedance spectroscopy and is maximum for [O]/[Li] = 15. This result is consistent with SAXS and thermo-mechanical analysis measurements and is due to the formation of cross-linking between the polymer chains for the larger lithium concentrations. These materials are solid, transparent, flexible and have an ionic conductivity up to 10(-4) S/cm. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
The kinetics of aggregation of tetraethoxysilane (TEOS)-derived silica sols, produced by acid-catalyzed and ultrasound-stimulated hydrolysis, were studied by 'in situ' measurements of small-angle X-ray scattering (SAXS) at the temperatures 40 degreesC, 60 degreesC and 70 degreesC. The results were analyzed in terms of the evolution with time (t) of the SAXS intensity probing the mass fractal characteristics of the system, the average radius of gyration (Rc,) of the clusters and the number of primary particles per cluster. The aggregation process yields mass fractal structures which exhibit a scattering exponent (alpha) practically equal to 2, in the probed length scale range (5.3 nm < 1/q < 0.22 nm), beneath and even far beyond the gel point. This suggests that a is a direct measure of the real mass fractal dimension (D) of the structure. The precursor sol (pH = 2) exhibits I nm mean sized clusters with mass fractal dimension D similar to 1.9. Increasing the pH to 4.5, the cluster mean size and the number of primary particles per cluster increase but the system keeps a more opened structure (D similar to 1.4). In the first aggregation stages, D increases up to similar to2 by incorporating primary particles to the clusters without changing their mean size. From this stage, the aggregation progresses following a thermally activated scaling law well described by R-G similar tot(1/D) in all cases. This is indicative of a diffusion-controlled cluster-cluster aggregation process. The activation energy of the process was found to be 91.7 kJ/mol. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
To obtain SnO2 films to be used for surface protection of fluoride glasses, a non-aqueous sol-gel route for the preparation was developed. An ethanolic SnO2 colloidal suspension was prepared by thermohydrolysis of SnCl4 solution at 70 degreesC. By using this procedure, redispersable powders with nanometer sized particles were obtained. Films were obtained by dip coating on glass and mica substrates. The structures of the ethanolic precursor suspension and films were compared to those of similar samples prepared by the classical aqueous sol-gel route. Comparative analyses performed by photon correlation spectroscopy demonstrated that the powders obtained by freeze-drying are fully redispersable either in aqueous or in alcoholic solutions at pH greater than or equal to 8. As prepared sols and redispersed colloidal suspensions have hydrodynamic radius distribution (2-14 nm) with an average size close to 7 nm. The variations in film structures with firing temperature were investigated by small-angle X-ray scattering and X-ray reflectometry. The experimental results show that the films have a two level porous structure composed of agglomerates of primary colloidal particles. The sintering of the primary particles leads to the densification of agglomerates and to the formation of inter-agglomerate spatially correlated pores. The volume fraction of intra-agglomerate pores is reduced from approximate to 50% to approximate to 30% by the precipitation of precursor salts partially hydrolyzed in ethanolic solution. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
Indium doped ZnO films were deposited by the pyrosol process on glass substrates at different temperatures from solutions containing In/Zn molar ratios up to 10%. The nanostructure of the films was investigated using grazing-incidence small angle X-ray scattering (GISAXS). The mass density was determined by X-ray reflectivity and the composition by X-ray photoelectron spectroscopy. The GISAXS measurements revealed an anisotropic pattern for films deposited at 573 and 623 K and a isotropic one for those deposited at higher temperatures. The anisotropic patterns indicate the presence of elongated nanopores with their long axes perpendicular to the film surface. In contrast, the isotropic nature of GISAXS patterns of films grown at high temperatures (673 and 723 K) suggests the presence of spherical voids. The pore size distribution function determined from the isotropic patterns indicates a multimodal size distribution. on the other hand, the measured mass density of the doped films with isotropic nanotexture is higher than that of the anisotropic films while the electric resistivity is significantly lower. This is in agreement with the detected strong reduction of the void density and specific surface area at approximately constant pore size.
Resumo:
Small angle X-ray scattering measurements, bulk and skeleton density data and an in-situ study by dilatometric thermal analysis about the nanoporosity elimination above 800 degreesC in TEOS sonogels are presented. Apparently, two processes act during the nanoporosity elimination, which precedes the foaming phenomenon often observed in such systems. The first, with an activation energy of (3.9 +/- 0.4) x 10(2) kJ/mol and high frequency factor, is the controlling process of the most nanoporosity elimination at higher temperature. The value of this activation energy is compatible to that for viscous flux throughout densification process in typical silica-based materials. The second, with an activation energy of (49 +/- 5) kJ/mol and low frequency factor, seems to be the controlling process of the first and extremely slow nanoporosity elimination at low temperature.
Resumo:
A structure modeling of two families of sol-gel derived Eu3+-doped organic/inorganic hybrids based on the results of small-angle X-ray scattering experiments is reported. The materials are composed of poly(oxyethylene) chains grafted at one or both ends to siloxane groups and are called mono- and di-urethanesils, respectively. A theoretical function corresponding to a two-level hierarchical structure model fits well the experimental Scattering curves. The first level corresponds to small siloxane clusters embedded in a polymeric matrix. The secondary level is associated to the existence of siloxane cluster rich domains surrounded by a cluster-depleted polymeric matrix. Results show that increasing europium doping favors the growth of the secondary domains. (C) 2002 Elsevier B.V. B.V. All rights reserved.