83 resultados para Resonance spectroscopy


Relevância:

30.00% 30.00%

Publicador:

Resumo:

[GRAPHICS]This work proposes a combined swelling-electron paramagnetic resonance (EPR) approach aiming at determining some unusual polymer solvation parameters relevant for chemical processes occurring inside beads. Batches of benzhydrylamine-resin (BHAR), a copolymer of styrene-1% divinylbenzene containing phenylmethylamine groups were, labeled with the paramagnetic amino acid 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amine-4-carboxylic acid (TOAC), and their swelling properties and EPR spectra were examined in DCM and DMF. By taking into account the BHARs labeling degrees, the corresponding swelling values, and some polymer structural characteristics, it was possible to calculate polymer swelling parameters, among them, the volume and the number of sites per bead, site-site distances and site concentration. The latter values ranged from 17 to 170 angstrom and from 0.4 to 550 mM, respectively. EPR spectroscopy was applied to validate the multistep calculation strategy of these swelling parameters. Spin-spin interaction was detected in the labeled resins at site-site distances less than approximately 60 A or probe concentrations higher than approximately 1 x 10(-2) M, in close agreement with the values obtained for the spin probe free in solution. Complementarily, the yield of coupling reactions in different resins indicated that the greater the inter-site distance or the lower the site concentration, the faster the reaction. The results suggested that the model and the experimental measurements developed for the determination of solvation parameters represent a relevant step forward for the deeper understanding and improvement of polymer-related processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Under physiological conditions B-form DNA is an exceedingly stable structure. However, experimental evidences obtained through nuclear magnetic resonance and fluorescence anisotropy suggest that the structure of the double helix fluctuates substantially. We describe photoacoustic phase modulation frequency measurements of ethidium bromide (Eb) with calf thymus, DNA. As in fluorescence phase modulation measurements, we used an intercalating dye as a probe; however, we monitored the triplet excited state lifetime at different ionic strengths. The triplet lifetime of Eb varied from about 0.30 ms, with no DNA present, to 20 ms, (at a DNA:Eb molar ratio of 5). With salt titration, this value falls, to about 2.0 ms. This result suggests, a strong coupling between the phenantridinium ring of the ethidium and the base pairs because of the stacking movement of the DNA molecule under salt effect. This, effect may be understood considering DNA as a polyelectrolyte. The counterions, in the solution shield the phosphate groups, reducing the electrostatic repulsion force between them, hence compacting the DNA molecule. The results from Fourier transform infrared demonstrated two important bands: 3187 cm(-1) corresponding to the symmetric stretching of the NH group of the bases, and 1225 cm(-1) corresponding to the asymmetric stretching of phosphate groups shifted toward higher wavenumbers, suggesting a proximity between the intercalant and base pairs and a modification of the DNA backbone state, both induced by salt accretion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A perylene derivative, n-(n-butyl)-n'-(4-aminobutyl) perylene-3,4,9,10-tetracarboxylic acid diimide (simplified as nBu-PTCD-(CH2)(4)-NH2) has been chosen as the target molecule for studies involving single molecule detection (SMD) using Raman scattering. The enhancement of the Raman signal is the result of the multiplicative effects of two phenomena, resonance Raman scattering (RRS) and surface-enhanced Raman scattering (SERS), which leads to the resulting surface-enhanced resonance Raman scattering (SERRS) process. The SERRS spectra from a single molecule have been collected using both silver and gold colloids. The SMD detection of the fundamental vibrational frequencies characteristic of nBu-PTCD-(CH2)(4)-NH2 is complemented with the detection of some overtones and combinations from ring stretching modes at the single molecule level. The background characterization of the ensemble vibrational spectroscopy of the target perylene and its SERRS is also presented, which includes the UV-vis absorption, experimental and calculated Raman scattering and infrared absorption, and molecular organization using reflection-absorption infrared spectroscopy (RAIRS).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Peat was taken from the Sergipe State, Brazil and characterized by several techniques: elemental and thermal analyses; Fourier infrared (FTIR) and solid state 13C nuclear magnetic resonance (NMR) spectroscopies; scanning electron microscopy (SEM), environmental scanning electron microscopy (ESEM) and X-ray diffractometry (XRD). Also, the Sergipe State peat samples were compared with other peat sample from later from Sao Paulo State, Brazil. The lowest O/C and E 4/E 6 ratios and differential thermal analysis (DTA) curves of the Santo Amaro (SAO) sample indicated that this sample had the highest degree of decomposition. FTIR results showed that Itabaiana (ITA) and São Paulo (SAP) samples presented more prominent peak at 1086 cm -1 attributed the presence of Si-O than SAO sample spectra. The SAO sample showed two more intense peaks at 2920 cm -1 and 2850 cm -1. These results were corroborated by 13C NMR and thermal gravimetric (TG) where the relative abundance of the alkyl-C groups was greater in the SAO sample. The X-ray diffractometry (XRD) of SAO sample is characteristic of amorphous matter however, the SAP and ITA samples revealed the large presence of quartz mineral. The scanning electron microscopy (SEM) and environmental scanning electron microscopy (ESEM) showed that the surface of peat samples have porous granules of organic material. The ITA and SAP peat samples are alike while SAO peat sample is richer in organic material. Only the SAO sample has truthful characteristics of peat. The results of this study showed that the samples are very different due to variable inorganic and organic material contents. ©2007 Sociedade Brasileira de Química.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, a Hydrogen Nuclear Magnetic Resonance (1H NMR) method has been developed to determine aromatics and ethanol in Brazilian commercial gasoline with low olefin content. The proposed method involves subdividing an 1H NMR spectrum into regions, each of which is assumed to be associated with a specific type of structural group (OH, CH, CH2 and CH3). The method is based on the assignment of overlapping regions of 1H NMR spectra due to the signals of naphthene (N), iso and normal paraffins (P) and ethanol (E). Each 1H NMR spectrum was divided into 8 regions and the integration was correlated to the percentage of the substances to be determined. The results of the analysis by 1H NMR were compared with analysis of GC-FID obtained with the PONA system. The proposed technique of 1H NMR was shown to be an appropriate method for this sample type.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)