104 resultados para Radioactive pollution of water
Resumo:
Purpose: The effect of water immersion on the shear bond strength (SBS) between 1 heat-polymerizing acrylic resin (Lucitone 550-L) and 4 autopolymerizing reline resins (Kooliner-K, New Truliner-N, Tokuso Rebase Fast-T, Ufi Gel Hard-U) was investigated. Specimens relined with resin L were also evaluated. Materials and Methods: One hundred sixty cylinders (20 × 20 mm) of L denture base resin were processed, and the reline resins were packed on the prepared bonding surfaces using a split-mold (3.5 × 5.0 mm). Shear tests (0.5 mm/min) were performed on the specimens (n = 8) after polymerization (control), and after immersion in water at 37°C for 7, 90, and 180 days. All fractured surfaces were examined by scanning electron microscopy (SEM) to calculate the percentage of cohesive fracture (PCF). Shear data were analyzed with 2-way ANOVA and Tukey's test; Kruskall-Wallis test was used to analyze PCF data (α = 0.05). Results: After 90 days water immersion, an increase in the mean SBS was observed for U (11.13 to 16.53 MPa; p < 0.001) and T (9.08 to 13.24 MPa, p = 0.035), whereas resin L showed a decrease (21.74 MPa to 14.96 MPa; p < 0.001). The SBS of resins K (8.44 MPa) and N (7.98 MPa) remained unaffected. The mean PCF was lower than 32.6% for K, N, and T, and higher than 65.6% for U and L. Conclusions: Long-term water immersion did not adversely affect the bond of materials K, N, T, and U and decreased the values of resin L. Materials L and U failed cohesively, and K, N, and T failed adhesively. © 2007 by The American College of Prosthodontists.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Although they are of economic importance, there have been few cytogenetic studies of the Gerridae (Heteroptera) in Brazil. We examined spermatogenesis (meiosis and spermiogenesis) and nucleolar behavior in three species of the family Gerridae. Brachymetra albinerva and Halobatopsis platensis were found to have a chromosome complement of 2n = 25 (24A + X0) and Cylindrostethus palmaris 2n = 29 (28A + X0) chromosomes. Fifteen individuals of these species were collected from the reservoir of São José do Rio Preto, SP, using screens and were transported in pots containing water to the laboratory, where cytogenetic preparations were made. The polyploidy nuclei are formed by several heteropyknotic regions; cells in meiotic prophase have a heteropyknotic region that is probably the sex chromosome, and the chromosomes from chiasmata. The spermatids are rounded and have a heteropyknotic region at the periphery of the nucleus; the sperm head is small, with a long tail. Silver impregnation of meiotic cells showed one or more disorganized bodies around the perichromosomal sheath. The round spermatids had two bodies next to each other, but these were elongated; one of the bodies remained in the head and the other migrated to the initial part of the tail at the end of spermagenesis, when the staining was no longer evident. The meiotic cells appear during spermatogenesis and have very similar silver-impregnation patterns in different species of Heteroptera.
Resumo:
In this work, is presented an alternative and non conventional technique for evaluate the water amount present in the hydrated ethanol used as automotive fuel. The standard technique used in this kind of measure is the use of densimeter. The proposal of this work is based on the measure of the linear attenuation coefficient of hydrated ethanol, using the gamma-ray attenuation technique. The water amount, in volume, can be determined knowing the linear attenuation coefficient of hydrated ethanol. Samples of hydrated ethanol, collected at fuel stations, located in Sorocaba, SP, Brazil, were analyzed and the results showed the feasibility of the technique. © 2011 American Institute of Physics.
Resumo:
Ethanol with added water may be found during the process of assessing its physical and chemical properties. This addition can damage automotive vehicle engines and also may contribute to tax evasion. The present contribution describes a method based on a photothermal transparent transducer to determine the water content in ethanol. A chamber with a window of lithium tantalate coated with a thin layer of indium tin oxide was used, and a 1450-nm laser diode was employed as the excitation source. The results indicated a nearly linear response of the apparatus, as a function of the water content in water/ethanol solutions ranging from 0 to 100 (vol.%). The results for the dependency of the photothermal signal on the laser power and chopping frequency suggested that reliable results can be obtained using laser power and chopping rates above 100 mW and 10 Hz, respectively. The results reported here may be useful in the development of an alternative method that can provide real-time data on the water concentration in ethanol in a rapid, portable and unambiguous way, and that can be easily used in laboratory analyses or in gas stations. © 2013 Elsevier B.V.
Resumo:
The self-assembly of short amino acid chains appears to be one of the most promising strategies for the fabrication of nanostructures. Their solubility in water and the possibility of chemical modification by targeting the amino or carboxyl terminus give peptide-based nanostructures several advantages over carbon nanotube nanostructures. However, because these systems are synthesized in aqueous solution, a deeper understanding is needed on the effects of water especially with respect to the electronic, structural and transport properties. In this work, the electronic properties of l-diphenylalanine nanotubes (FF-NTs) have been studied using the Self-Consistent Charge Density-Functional-based Tight-Binding method augmented with dispersion interaction. The presence of water molecules in the central hydrophilic channel and their interaction with the nanostructures are addressed. We demonstrate that the presence of water leads to significant changes in the electronic properties of these systems decreasing the band gap which can lead to an increase in the hopping probability and the conductivity. © the Owner Societies 2013.
Resumo:
Contents: The osteopontin gene may influence the fertility of water buffaloes because it is a protein present in sperm. The aim of this work was to identify polymorphisms in this gene and associate them with fertility parameters of animals kept under extensive grazing. A total of 306 male buffaloes older than 18 months, from two farms, one in the state of Amapá and the other in the state of Pará, Brazil were used in the study. Seven SNPs were identified in the regions studied. The polymorphisms were in gene positions 1478, 1513 and 1611 in the region 5′upstrem and positions 6690, 6737, 6925 and 6952 in the region amplified in intron 5. The SNPs were associated with the traits, namely scrotal circumference, scrotal volume, sperm motility, sperm concentration and sperm pathology. There were significant SNPs (p < 0.05) for all the traits. The SNP 6690 was significant for scrotal circumference, sperm concentration, sperm motility and sperm pathology and the SNP 6737 for scrotal volume. The genotype AA of SNP 6690 presented the highest averages for scrotal circumference, sperm concentration and motility and the lowest total number of sperm pathologies. For the scrotal volume trait, the animals with the largest volume were correlated with the presence of the genotype GG of SNP 6737. These results indicate a significance of the osteopontin gene as it seems to exert a substantial influence on the semen production traits of male buffaloes. © 2013 Blackwell Verlag GmbH.
Resumo:
Among the herbicides recommended for the dry season and registered to sugarcane crop, amicarbazone, isoxaflutole and the association diuron + hexazinone + sulfomethuron-methyl can be highlighted. These are pre-emergence herbicides efficient against broad-leaved weeds. Morning glory causes large losses in infested sugarcane fields by bending the stalks and interfering in harvesting. In this study the effectiveness of pre-emergence herbicides for two species of morning glory (Ipomoea hederifolia and Ipomoea grandifolia) was evaluated. Treatments were arranged in completely randomized factorial design (4 x 7). There were four periods of water restriction (0, 30, 60 and 90 days), seven chemical treatments [diuron + hexazinone + sulfometuron-methyl (1387 + 391 + 33.35 g a.i. ha-1), diuron + hexazinone + sulfometuron-methyl (1507.5 + 425 + 36.25 g a.i. ha-1), diuron + hexazinone + sulfometuron-methyl (1658.25 + 467.5 + 39.87 g a.i. ha-1), diuron + hexazinone + sulfometuronmethyl (1809 + 510 + 43.5 g a.i. ha-1), amicarbazone (1190 g a.i. ha-1), amicarbazone + isoxaflutole (840 + 82.5 g a.i. ha-1)] and a control with no application. At 7, 14, 21 and 28 days after the restoration of moisture, control was visually evaluated. After the final evaluation, the dry mass of morning glories was measured. At 90 days of water restriction, diuron + hexazinone + sulfometuron-methyl was more effective to control I. hederifolia than the amicarbazone + isoxaflutole tank mixture. The four diuron + hexazinone + sulfometuronmethyl doses have reduced morning glory dry mass to zero; whereas treatments with amicarbazone have not. The most effective treatment for morning glory control was diuron + hexazinone + sulfometuron-methyl. This result may be due to a possible synergistic interaction.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The kinetic of mullite crystallization from sol–gel method, with different water content, was investigated under non-isothermal conditions using DTA. The sols were obtained from Al(NO3)3.9H2O (ANN) and Si(OC2H5)4 (TEOS) mixtures by varying the water–alcohol content of the system. The crystalline phase changes were verified by X-ray diffraction (XRD). For a sample prepared using ethanol-based alkoxide solution (M0), only Al-poor mullite (p-mullite) crystallizes at 1000 °C; for the one synthesized with low water concentration (M6) Al-rich mullite (r-mullite) and spinel crystallize together; and for a sample prepared using a water-based alkoxide solution only spinel is formed. Thus, the variation of water contents during the synthesis caused great variations in the course of mullitization process. The average value of the apparent activation energy determined for p-mullite, r-mullite and spinel phase crystallization were found to be E = (899 ± 61) kJ mol−1, E = (1015 ± 272) kJ mol−1 and E = (980 ± 196) kJ mol−1, respectively. These results showed that sample M(0) was a monophasic gel, where aluminum and silicon atoms are mixed at a molecular level while sample M(100) was a diphasic gel, where silicon and aluminum atoms are distributed in a nanometric level. The fast reaction between TEOS and water molecules is responsible for this great difference in the sample's homogeneity. The kinetic model of the crystallization process was determined using Malek's procedure. It was established that the crystallization of p-mullite, r-mullite and spinel phase can be described by Šesták–Berggren autocatalytic model.
Resumo:
The city of Vazante-MG is of great socioeconomic and environmental interest because it is the most important zinc producer district of Brazil. The mineral processing and geochemical processes may determine high concentrations of heavy metals in water intended for human consumption. Thus, the present study aimed to quantify and evaluate the heavy metal genotoxicity of artesian water in the city by Atomic absorption spectrophotometer analysis and testing with the Allium cepa test, respectively. This study reveals a chemical contamination in well water in the city, caused by the presence of heavy metals. Therefore, it can be considered that the high levels of heavy metals found in water samples are correlated with the genotoxic events observed in root cells of A. cepa.