280 resultados para REVOLUCION CIENTIFICA


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We studied the effects of pancreas transplantation on kidney lesions of rats with alloxan-induced diabetes. Ninety inbred male Lewis rats were randomly assigned to 3 experimental groups: group NC included 30 non-diabetic control rats, group DC included 30 alloxan-induced diabetic control rats, and group PT included 30 alloxan-induced diabetic rats that received pancreas transplants from normal donor Lewis rats. Each group was further divided into 3 subgroups of 10 rats which were sacrificed at 1, 3, and 6 months of follow-up, respectively. Clinical and laboratory parameters during these periods were documented. The kidneys of 5 rats in each subgroup were studied and 50 glomeruli and tubules from each kidney were analyzed by light microscopy by two different investigators in a double-blind study. There was progressive glomerular basement membrane thickening (GBMT), mesangial enlargement (ME), and Bowman's capsule thickening (BCT) in kidneys of rats in the 3 experimental groups during follow-up. These alterations were significantly higher in DC rats (GBMT: 1.99 +/- 0.31; ME: 2.00 +/- 0.33; BCT: 1.88 +/- 0.27) when compared to NC(GBMT: 1.54 +/- 0.30; ME: 1.56 +/- 0.47; BCT: 1.36 +/- 0.35) and PT rats (GBMT: 1.49 +/- 0.29; ME: 1.57 +/- 0.36; BCT: 1.35 +/- 0.28) at 6 months (P<0.01). The extent of GBMT, ME, and BCT observed in DC rats at 1 and 3 months was not significantly different from NC and PT rats. The amount of kidney lesions in PT rats was similar to that of NC rats and lower than those of DC rats at 6 months (P<0.01). In addition, Armanni-Ebstein lesions of the tubules (AE) and tubular lumen protein (PRO) observed in DC rats were not present in NC or PT rats. We conclude that pancreas transplantation in alloxan-induced diabetic rats prevents the development of kidney lesions beginning at 6 months after transplantation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We tested the effects of estradiol, progesterone and testosterone on water and salt intake induced by angiotensin II (ANG II) injected into the third ventricle of female Holtzman rats weighing 250-300 g. The water and salt ingestion observed after 120 min in the control experiments (injection of 0.5 mu l of 0.15 M NaCl into the third ventricle) was 1.6 +/- 0.3 ml (N = 10) and 0.3 +/- 0.1 ml (N = 8) in intact rats, respectively, and 1.4 +/- 0.3 ml (N = 10) and 0.2 +/- 0.1 (N = 8) in ovariectomized rats, respectively. ANG II injected in intact rats (4, 6, 12, 25, and 50 ng, icv, in 0.5 mu l saline) induced an increase in water intake (4.3 +/- 0.6, 5.4 +/- 0.7. 7.8 +/- 0.8, 10.4 +/- 1.2, 11.2 +/- 1.4 ml/120 min, respectively) (N = 43). The same doses of icv ANG II in intact rats increased the 3% NaCl intake (0.9 +/- 0.2; 1.4 +/- 0.3, 2.3 +/- 0.4, 2.2 +/- 0.3. and 2.5 +/- 0.4 ml/120 min, respectively) (N = 42). When administered to ovariectomized rats ANG II induced comparable amounts of water intake (4.0 +/- 0.5, 4.8 +/- 0.6, 6.9 +/- 0.7. 9.6 +/- 0.8, and 10.9 +/- 1.2 ml/120 min, respectively) (N = 43) but there was a significant decrease of 3% NaCl solution ingestion (0.3 +/- 0.1, 0.4 +/- 0.1, 0.8 +/- 0.2, 0.7 +/- 0.2, and 0.6 +/- 0.2 ml/120 min, respectively) (N = 44). Estrogen (50 mu g), progesterone (25 ng), and testosterone (300 mu g) were injected daily into ovariectomized rats for 21 days. Treatment with estrogen decreased the water intake and abolished the saline ingestion induced by icy injection of ANG II (12 ng (2.8 +/- 1.2 and 0.3 +/- 0.1 ml/120 min, respectively) (N = 8). Treatment with progesterone also reduced the water intake (3.3 +/- 0.6 ml/120 min) (N = 8) and abolished the ANG II-induced saline ingestion (0.4 +/- 0.1 ml/120 min) (N = 8), but these effects were not observed with testosterone (6.4 +/- 0.8 and 2.2 +/- 0.3 ml/120 min, respectively) (N = 8). These results indicate that ANG II induces a greater increase in sodium intake in intact female rats than in ovariectomized rats and that estrogen and progesterone impair water and sodium intake in ovariectomized rats.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. A method for obtaining the end-systolic left ventricular (LV) pressure-diameter and stress-diameter relationships in man was critically analyzed.2. Pressure-diameter and stress-diameter relationships were determined throughout the cardiac cycle by combining standard LV manometry with M-mode echocardiography. Nine adult patients with heart disease and without heart failure were studied during intracardiac catheterization under three different conditions of arterial pressure, i.e., basal (B) condition (mean +/- SD systolic pressure, 102 +/- 10 mmHg) and two stable states of arterial hypertension (H(I), 121 +/- 12 mmHg; H(II), 147 +/- 17 mmHg) induced by venous infusion of phenylephrine after parasympathetic autonomic blockade with 0.04 mg/kg atropine.3. Significant reflex heart rate variation with arterial hypertension was observed (B, 115 +/- 20 bpm; H(I), 103 +/- 14 bpm; H(II), 101 +/- 13 bpm) in spite of the parasympathetic blockade with atropine. The linear end-systolic pressure-diameter and stress-diameter relationships ranged from 53.0 to 160.0 mmHg/cm and from 97.0 to 195.0 g/cm3, respectively.4. The end-systolic LV pressure-diameter and stress-diameter relationship lines presented high and variable slopes. The slopes, which are indicators of myocardial contractility, are susceptible to modifications by small deviations in the measurement of the ventricular diameter or by delay in the pressure curve recording.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The LH-RH analog LH-RH-A (des-Gly10,[D-Trp6]-LH-RH ethylamide) was administered in pharmacological doses (20-mu-g/kg, sc) to adult male cats for 15 days and its effect on testis and adrenal function was determined. Daily administration of the analog promoted a 3-fold increase in plasma testosterone levels after 7 days, indicating a stimulatory effect of LH-RH-A (mean +/- SD for 6 treated cats, 1.88 +/- 0.35 vs 0.51 +/- 0.08 ng/ml for 6 control cats). After 15 days the LH-RH-A-treated group exhibited a similar plasma testosterone concentration as the control group (mean +/- SD, 0.96 +/- 0.35 ng/ml vs 0.88 +/- 0.39 ng/ml, respectively), similar testicular and adrenal weights and no significant differences in the spermatogenic process. However, semiquantitative analysis of the zona fasciculata of the adrenals from the LH-RH-A-treated group showed a significant accumulation of a substance not stained by hematoxylin-eosin or Schiff periodic acid (mean +/- SD of index of accumulation was 3.50 +/- 0.4 for treated cats vs 2.20 +/- 0.3 for control cats). The present results show that pharmacological doses of LH-RH-A have an effect on the adrenal cortex of cats without modifying spermatogenesis or plasma testosterone levels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The involvement of opioid receptors in the analgesic response was evaluated by the tail-immersion test in simultaneously adrenalectomized and ovariectomized female Wistar rats (210-250 g). The reaction time (mean +/- SEM) for tail withdrawal from hot water decreased significantly 2 weeks after surgery (3.52 +/- 0.20 s) when compared to intact animals (6.09 +/- 0.23 s). Hormonal replacement with dexamethasone (50-mu-g/day) did not affect reaction time (3.38 +/- 0.19 s). However, this response was restored by combined adrenal and gonadal steroid substitution (estradiol 5-mu-g/day and progesterone 1.5-mu-g 6 h before the tests) therapy (5.11 +/- 0.45 s in animals treated with dexamethasone plus estradiol and 5.04 +/- 0.43 s in animals treated with dexamethasone plus estradiol plus progesterone). Naloxone (2 mg/kg) decreased the reaction time of animals treated with adrenal and gonadal steroids (5.11 +/- 0.45 vs 4.15 +/- 0.44 s and 5.04 +/- 0.43 vs 3.87 +/- 0.28 s, respectively, before and after naloxone) but failed to decrease it in rats treated with dexamethasone only (3.88 +/- 0.18 vs 4.34 +/- 0.25 s, before and after naloxone). These observations indicate that gonadal steroids are the most important steroid factors involved in the reaction time to tail immersion in hot water and confirm other reports that the opioid pathways modulating the neuronal circuitry require the presence of these hormones.