151 resultados para REDUCES ARTERIAL STIFFNESS
Resumo:
We determined the effects of moxonidine and rilmenidine 20 mol (alpha(2)-adrenergic and imidazoline receptor agonists) injected into the medial septal area (MSA) on the pilocarpine-induced salivation, when injected intraperitoneally (i.p.), of male Holtzman rats weighing 250300 g, with stainless-steel cannula implanted into the MSA. The rats were anesthetized with zoletil 50 mg kg(-1) b.wt. (tiletamine chloridrate 125.0 mg and zolazepan chloridrate 125.0 mg) into quadriceps muscle intramuscularly (IM), saliva was collected using pre-weighed small cotton balls inserted in the animal's mouth. The pre-treatment with moxonidine injected into the MSA reduced the salivation induced by pilocarpine (1 mg kg(-1)) injected i.p. (12 +/- 3 mg min(-1)) vs. control (99 +/- 9 mg min(-1)). The pre-treatment with rilmenidine 40 nmol also reduced the salivation induce by pilocarpine injected i.p. (20 +/- 5 mg min(-1)) vs. control (94 +/- 7 mg min(-1)). Idazoxan 40 nmol (imidazoline receptor antagonist) injected into the MSA previous to moxonidine and rilmenidine partially blocked the effect of moxonidine and totally blocked the rilmenidine effect in pilocarpine-induced salivation injected i.p. (60 +/- 8 and 95 +/- 10 mg min(-1), respectively). Yohimbine 40 nmol (alpha(2)-adrenergic receptor antagonist) injected into the MSA previously to moxonidine and rilmenidine partially blocked the moxonidine effect but produced no change on the rilmenidine effect on i.p. pilocarpine-induced salivation (70 +/- 6 and 24 +/- 6 mg min(-1), respectively). Injection of these alpha(2)-adrenergic and imidazoline agonists and antagonists agents i.p. produced no change on i.p. pilocarpine-induced salivation. These results show that central, but not peripheral, injection of alpha(2)-adrenergic and imidazoline agonists' agents inhibit pilocarpine-induced salivation. Idazoxan, an imidazoline receptor antagonist, totally inhibits the rilmenidine effect and partially inhibits the moxonidine effect on pilocarpine-induced salivation. Yohimbine produced no change on rilmenidine effect but partially inhibited the moxonidine effect. Both of these antagonists when injected into the MSA previous to pilocarpine i.p. potentiated the sialogogue effect of pilocarpine. The results suggest that alpha(2)-adrenergic/imidazoline receptor of the MSA when stimulated blocked pilocarpine-induced salivation in rats when injected intraperitonially These receptors of the medial septal area have an inhibitory mechanism on salivary secretion. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Cholinergic, agonists activate salivation and the alpha (2)-adrenergic and imidazoline receptor agonists induce opposite effects. In the present study, we investigated the effects of intracerebroventricular (i.c.v.) or intraperitoneal (i.p.) injection of moxonidine (an a-adrenergic and imidazoline receptor agonist) on the salivation induced by the cholinergic agonist pilocarpine. Male Holtzman rats wish stainless steel cannula implanted into the lateral ventricle (LV) were used. In rats anesthetized with tribromoethanol (200 mg kg(-1)), saliva was collected using pre-weighed small cotton balls inserted in the animal's mouth. The treatment with moxonidine (5, 10 and 20 nmol in 1 mul) injected,i.c.v. reduced the salivation induced by pilocarpine (1 mg kg(-1)) injected i.p. (48 +/- 5, 17 +/- 2 and 15 +/- 2 mg min(-1) vs. control, 73 +/- 7 mg min(-1)). The same doses of moxonidine injected i.c.v. also reduced the salivary secretion induced by pilocarpine (500 nmol in 1 mul). injected i.c.v. (44 +/- 1, 14 +/- 2 and 20 +/- 3 mg min(-1) vs. control, 51 +/- 2 mg min(-1)). Injection of moxonidine (20 nmol in 0.1 ml) i.p. produced no chance on i.p. pilocarpine-induced salivation (58 +/- 4 mg min(-1) vs. control, 50 +/- 4 mg min(-1)). The results show that central, but not peripheral, injection of moxonidine inhibit,. pilocarpine-induced salivation, suggesting that central mechanisms activated by alpha (2)-adrenergic/imidazoline agonists inhibit cholinergic-induced salivation in rats. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
Male Holtzman rats weighting 200-250 g were anesthetized with zoletil 50 mg/Kg (tiletamine chloridrate 125.0 mg and zolazepan chloridrate 125.0 mg) into quadriceps muscle and stainless steel cannulas were implanted into their supraoptic nucleus (SON). We investigated the effects of the injection into the supraoptic nucleus (SON) of FK 409, a nitric oxide donor, and N(W-)nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthase inhibitor (NOS), on the salivary secretion, arterial blood pressure, sodium excretion and urinary volume induced by pilocarpine, which was injected into SON. The drugs were injected in 0.5 mul volume over 30-60 s. Controls was injected with a similar volume of 0.15 M NaCl. FK 409 and L-NAME were injected at doses of 20 mug/0.5 mul and 40 mug/0.5 mul. respectively. The amount of saliva secretion was studied over a five-minute period after injection of pilocarpine into SON. Injection of pilocarpine (10, 20, 40, 80, 160 mug/mul) into SON produced a dose-dependent increase in salivary secretion. L-NAME was injected into SON prior to the injection of pilocarpine into SON, producing an increase in salivary secretion due to the effect of pilocarpine. FK 409 injected into SON attenuating the increase in salivary secretion induced by pilocarpine. Mean arterial pressure (MAP) increase after injections of pilocarpine into the SON. L-NAME injected into the SON prior to injection of pilocarpine into SON increased the MAP. FK 409 injected into the SON prior to pilocarpine attenuated the effect of pilocarpine on MAP. Pilocarpine (0.5 mumol/0.5 mul) injected into the SON induced an increase in sodium and urinary excretion. L-NAME injected prior to pilocarpine into the SON increased the urinary sodium excretion and urinary volume induced by pilocarpine. FK 409 injected prior to pilocarpine into the SON decreased the sodium excretion and urinary volume induced by pilocarpine. All these roles of pilocarpine depend on the release of nitric oxide into the SON. In summary the present results show: a) SON is involved in pilocarpine-induced salivation; b) that mechanism involves increase in MAP, sodium excretion and urinary volume. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
In this study we investigated the influence of cu-adrenergic antagonists injections into the paraventricular nucleus (PVN) of the hypothalamus on the thirst and salt appetite, diuresis, natriuresis, and presser effects of angiotensin II (ANG II) stimulation of medial septal area (MSA). ANG II injection into the MSA induced water and sodium intake, diuresis, natriuresis, and presser responses. The previous injection of prazosin (an alpha (1)-adrenergic antagonist) into the PVN abolished, whereas previous administration of yohimbine (an alpha (2)-adrenergic antagonist) into the PVN increased the water and sodium intake, urinary, natriuretic, and presser responses induced by ANG ii injected into the MSA. Previous injection of a nonselective alpha -adrenergic antagonist, regitin, into the PVN blocked the urinary excretion, and reduced the water and sodium intake, sodium intake, and presser responses induced by ANG II injected into the MSA. The present results suggest that alpha -adrenergic pathways involving the PVN are important for the water and sodium excretion, urine and sodium excretion, and presser responses, induced by angiotensinergic activation of the MSA. (C) 2001 Elsevier B.V.
Resumo:
Peripheral treatment with the cholinergic agonist pilocarpine induces intense salivation that is inhibited by central injections of the alpha(2)-adrenergic/imidazoline receptor agonist moxonidine. Salivary gland blood flow controlled by sympathetic and parasympathetic systems may affect salivation. We investigated the changes in mean arterial pressure (MAP) and in the vascular resistance in the submandibular/sublingual gland (SSG) artery, superior mesenteric (SM) artery and low abdominal aorta (hindlimb) in rats treated with intraperitoneal (i.p.) pilocarpine alone or combined with intracerebroventricular (i.c.v.) moxonidine. Male Holtzman rats with stainless steel cannula. implanted into lateral ventricle (LV) and anesthetized with urethane were used. Pilocarpine (4 mumol/kg of body weight) i.p. reduced SSG vascular resistance (-50 +/- 13% vs. vehicle: 5 +/- 3%). Pilocarpine i.p. also increased mesenteric vascular resistance (15 +/- 5% vs. vehicle: 2 +/- 3%) and MAP (16 +/- 3 mmHg, vs. vehicle: 2 +/- 3 mmHg). Moxonidine (20 nmol) i.c.v. increased SSG vascular resistance (88 +/- 12% vs. vehicle: 7 +/- 4%). When injected 15 min following i.c.v. moxonidine, pilocarpine i.p. produced no change on SSG vascular resistance. Pilocarpine-induced pressor responses and increase in mesenteric vascular resistance were not modified by i.c.v. moxonidine. The treatments produced no change in heart rate (HR) and hindlimb vascular resistance. The results show that (1) i.p. pilocarpine increases mesenteric vascular resistance and MAP and reduces salivary gland vascular resistance and (2) central moxonidine increases salivary gland vascular resistance and impairs pilocarpine-induced salivary gland vasodilatation. Therefore, the increase in salivary gland vascular resistance may play a role in the anti-salivatory response to central moxonidine. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The inflation of an intravascular balloon positioned at the superior vena cava and right atrial junction (SVC-RAJ) reduces sodium or water intake induced by various experimental procedures (e.g. sodium depletion; hypovolaemia). In the present study we investigated if the stretch induced by a balloon at this site inhibits a rapid onset salt appetite, and if this procedure modifies the pattern of immunohistochemical labelling for Fos protein (Fos-ir) in the brain. Male Sprague-Dawley rats with SVC-RAJ balloons received a combined treatment of furosemide (Furo; 10 mg (kg bw)(-1)) plus a low dose of the angiotensin-converting enzyme inhibitor captopril (Cap; 5 mg (kg bw)(-1)). Balloon inflation greatly decreased the intake of 0.3 M NaCl for as long as the balloon was inflated. Balloon inflation over a 3 h period following Furo-Cap treatment decreased Fos-ir in the organum vasculosum of the lamina terminalis and the subfornical organ and increased Fos-ir in the lateral parabrachial nucleus and caudal ventrolateral medulla. The effect of balloon inflation was specific for sodium intake because it did not affect the drinking of diluted sweetened condensed milk. Balloon inflation and deflation also did not acutely change mean arterial pressure. These results suggest that activity in forebrain circumventricular organs and in hindbrain putative body fluid/cardiovascular regulatory regions is affected by loading low pressure mechanoreceptors at the SVC-RAJ, a manipulation that also attenuates salt appetite.
Resumo:
Introduction. Brain arginine(8)-vasopressin (AVP), through the V-1a- and V-2-receptors, is essential for the maintenance of mean arterial pressure (MAP). Central AVP interacts with the components of the renin-angiotensin system, which participate in MAP regulation. This study all to determine the effects of V-1a-, V-2- and V-1a/V-2-AVP selective antagonists and AT(1)- and AT(2)-angiotensin II (Ang II) selective antagonists on the MAP induced by AVP injected into the medial septal area (MSA) of the brain.Materials and methods. Male Holtzman rats with stainless steel cannulae implanted into the MSA were used in experiments. Direct MAP was recorded in Conscious rats.Results. AVP administration into the MSA caused a prompt and potent pressor response in a dose-dependent fashion. Pretreatment with the V-1a- and V-2-antagonists reduced, whereas prior injection of the V-1a/V-2-antagonist induced a decrease in the MAP that remained below the baseline. Both AT(1)- and AT(2)-antagonists elicited a decrease, While simultaneous injections of two antagonists were more effective in decreasing the MAP induced AVP.Conclusion. These results indicate there is a synergism bell the V-1a- and V-2-AVP, and AT(1)- AT, and AT(2)-Ang II receptors in the MSA in the regulation of MAP.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)