415 resultados para QC 20 (denture base resin)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The selection and use of hard chairside reline resins must be made with regard to dimensional stability, which will influence the accuracy of fit of the denture base. This study compared the dimensional change of two hard chairside reline resins (Duraliner II and Kooliner) and one heat-curing denture base resin (Lucitone 550). A stainless steel mold with reference dimensions (AB, CD) was used to obtain the samples. The materials were processed according to the manufacturer's recommendations. Measurements of the dimensions were made after processing and after the samples had been stored in distilled water at 37° C for eight different periods of time. The data were recorded and then analyzed with analysis of variance. All materials showed shrinkage immediately after processing (p < 0.05). The only resin that exhibited shrinkage after 60 days of storage in water was Duraliner II; these changes could be clinically significant in regard of tissue fit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: This study evaluated the potential effects of denture base resin water storage time and an effective denture disinfection method (microwave irradiation at 650 W for 6 minutes) on the torsional bond strength between two hard chairside reline resins (GC Reline and New Truliner) and one heat-polymerizing denture base acrylic resin (Lucitone 199). Materials and Methods: Cylindrical (30 x 3.9 mm) denture base specimens (n = 160) were stored in water at 37°C (2 or 30 days) before bonding. A section (3.0 mm) was removed from the center of the specimens, surfaces prepared, and the reline materials packed into the space. After polymerization, specimens were divided into four groups (n = 10): Group 1 (G1) - tests performed after bonding; Group 2 (G2) - specimens immersed in water (200 ml) and irradiated twice (650 W for 6 minutes); Group 3 (G3) - specimens irradiated daily until seven cycles of disinfection; Group 4 (G4) - specimens immersed in water (37°C) for 7 days. Specimens were submitted to a torsional test (0.1 Nm/min), and the torsional strengths (MPa) and the mode of failure were recorded. Data from each reline material were analyzed by a two-way analysis of variance, followed by Neuman-Keuls test (p = 0.05). Results: For both Lucitone 199 water storage periods, before bonding to GC Reline resin, the mean torsional strengths of G2 (2 days - 138 MPa; 30 days - 132 MPa), G3 (2 days - 126 MPa; 30 days - 130 MPa), and G4 (2 days - 130 MPa; 30 days - 137 MPa) were significantly higher (p < 0.05) than G1 (2 days - 108 MPa; 30 days - 115 MPa). Similar results were found for Lucitone 199 specimens bonded to New Truliner resin, with G1 specimens (2 days - 73 MPa; 30 days - 71 MPa) exhibiting significantly lower mean torsional bond strength (p < 0.05) than G2 (2 day - 86 MPa; 30 days - 90 MPa), G3 (2 days - 82 MPa; 30 days - 82 MPa), and G4 specimens (2 days - 78 MPa; 30 days - 79 MPa). The adhesion of both materials was not affected by water storage time of Lucitone 199 (p > 0.05). GC reline showed a mixed mode of failure (adhesive/cohesive) and New Truliner failed adhesively. Conclusions: Up to seven microwave disinfection cycles did not decrease the torsional bond strengths between the hard reline resins, GC Reline and New Truliner to the denture base resin Lucitone 199. The effect of additional disinfection cycles on reline material may be clinically significant and requires further study. Copyright © 2006 by The American College of Prosthodontists.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Odontologia - FOA

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the large number of studies addressing the effect of microwave polymerization on the properties of acrylic resin, this method has received limited clinical acceptance. This study evaluated the influence of microwave polymerization on the flexural strength of a denture base resin. A conventional heat-polymerized (Classico), a microwave-polymerized (Onda-Cryl) and a autopolymerizing acrylic (Jet) resins were used. Five groups were established, according to polymerization cycles: A, B and C (Onda-Cryl, short cycle - 500W/3 min, long - 90W/13 min + 500W/90 see, and manufacturing microwave cycle - 320W/3 min + OW/3 min + 720W/3 min); T(Classico, water bath cycle - 74 degrees C/9h) and Q (Jet, press chamber cycle - 50 degrees C/15 min at 2 bar). Ten specimens (65 x 10 x 3.3 mm) were prepared for each cycle. The flexural strength of the five groups was measured using a three-point bending test at a cross-head speed of 5 mm/min. Flexural strength values were analyzed by one-way ANOVA and the Tukey's test was performed to identify the groups that were significantly different at 5% level. The microwave-polymerized groups showed the highest means (p<0.05) for flexural strength (MPa) (A = 106.97 +/- 5.31; B = 107.57 +/- 3.99; C = 109.63 +/- 5.19), and there were no significant differences among them. The heat-polymerized group (T) showed the lowest flexural strength means (84.40 +/- 1.68), and differ significantly from all groups. The specimens of a microwavable denture base resin could be polymerized by different microwave cycles without risk of decreasing the flexural strength.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Statement of problem. Microwave irradiation has been suggested for denture disinfection. However, the effect of this procedure on the hardness and bond strength between resilient liners and denture base acrylic resin is not known.Purpose. This study evaluated the effect of water storage time and microwave disinfection on the hardness and peel bond strength of 2 silicone resilient lining materials to a heat-polymerized acrylic resin.Material and methods. Acrylic resin (Lucitone 199) specimens (75 X 10 X 3 mm) were stored in water at 37 degrees C (2 or 30 days) before bonding (n = 160). The resilient lining materials (GC Reline Extra Soft and Dentusil) were bonded to the denture base and divided into the following 4 groups (n = 10): Tests performed immediately after bonding (control); specimens immersed in water (200 mL) and irradiated twice, with 650 W for 6 minutes; specimens irradiated daily for 7 total cycles of disinfection; specimens immersed in water (37 degrees C) for 7 days. Specimens were submitted to a 180-degree peel test (at a crosshead speed of 10 mm/min) and the failure values (MPa) and mode of failure were recorded. Pretreatment and posttreatment hardness measurements (Shore A) of the resilient materials were also performed. Three-way analysis of variance, followed by the Tukey HSD test, was performed (alpha=.05).Results. The analysis revealed that, for all conditions, the mean failure strengths of GC Reline Extra Soft (0.95-1.19 MPa) were significantly higher (P<.001) than those of Dentusil (0.45-0.50 MPa). The adhesion of the liners was not adversely affected by water storage time of Lucitone 199 or microwave disinfection. All peel test failures were cohesive. There was a small but significant difference (P<.001) between the pretreatment (34.33 Shore A) and posttreatment (38.69 Shore A) hardness measurements.Conclusion. Microwave disinfection did not compromise the hardness of either resilient liners or their adhesion to the denture base resin Lucitone 199.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: This study investigated the effect of microwave disinfection (650 W/6 min) on the flexural strength of five hard chairside reline resins (Kooliner, Duraliner II, Tokuso Rebase Fast, Ufi Get Hard, New Truliner) and one denture base resin (Lucitone 550).Methods: Thirty-two specimens (3.1x10x64 mm) from each acrylic resin were produced and divided into four groups of eight specimens each. The flexural test was performed after polymerization (G1), after two cycles of microwave disinfection (G2), after 7 days storage in water at 37 degrees C (G3) and after seven cycles of microwave disinfection (G4). Specimens from group G4 were microwaved daily being stored in water at 37 degrees C between exposures. The specimens were placed in three-point bend fixture in a MTS machine and loaded until failure. The flexural values (MPa) were submitted to ANOVA and Tukey's test (p=0.05).Results: Two cycles of microwave disinfection promoted a significant increase in flexural strength for materials Kooliner and Lucitone 550. After seven cycles of microwave disinfection, materials Kooliner and New Truliner showed a significant increase (p<0.05) in flexural values. The flexural strength of the material Tokuso Rebase was not significantly affected by microwave irradiation. Seven cycles of microwave disinfection resulted in a significant decrease in the flexural strength of material Duraliner II. Material Ufi Get Hard was the only resin detrimentally affected by microwave disinfection after two and seven cycles.Conclusions: Microwave disinfection did not adversely affect the flexural strength of all tested materials with the exception of material Ufi Get Hard. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)