387 resultados para Polyvinylidene fluoride
Resumo:
Aims To assess the prevalences of caries, of developmental defects of enamel and their interrelationship in Brazilian 9-10-year-olds from areas of contrasting fluoridation histories.Methods systematic random sampling procedures were used to select children from an area where water had been fluoridated in 1963 and from a second area where water had been fluoridated since 1998. Clinical examinations for caries were carried out using the DMFT index and WHO diagnostic criteria. Developmental defects of enamel on upper incisors were diagnosed using the DDE index.Results A difference of 40% in DMFT was observed, with a lower prevalence of disease in the area fluoridated since 1963. Diffuse opacities affected 14.3% of the children from the area fluoridated since 1963 compared with only 2.4% in the area fluoridated in 1998. Children living in the area fluoridated in 1963 who had diffuse defects had twice the chance of being free from caries compared with those living in the same area who had no defects or who had only demarcated or hypoplastic defects.Conclusions This study confirms previous ones in showing the benefits of water fluoridation. Diffuse opacities of upper incisors affected relatively few subjects in either of the two areas.
Resumo:
Glasses containing lutetium fluoride have been prepared in the system BaF2 - SrF2 - ZnF2 - LuF3 - InF3. The composition of the phases crystalling out of these glasses suggests octahedral pre-arrangement comprising [LuF6] and [Sr(Ba)F-2 structural fragments.
Resumo:
The phase transition from the non-polar a-phase to the polar beta-phase of poly(vinylidene fluoride) (PVDF) has been investigated using micro-Raman spectroscopy, which is advantageous because it is a nondestructive technique. Films of alpha-PVDF were subjected to stretching under controlled rates at 80 degrees C, while the transition to P-PVDF was monitored by the decrease in the Raman band at 794 cm(-1) characteristic of the a-phase, along with the concomitant increase in the 839 cm-1 band characteristic of the P-phase. The alpha ->beta transition in our PVDF samples could be achieved even for the sample stretched to twice (2 X -stretched) the initial length and it did not depend on the stretching rate in the range between 2.0 and 7.0 mm/min. These conclusions were corroborated by differential scanning calorimetry (DSC) and X-ray diffraction experiments for PVDF samples processed under the same conditions as in the Raman scattering measurements. Poling with negative corona discharge was found to affect the a-PVDF morphology, improving the Raman bands related to this crystalline phase. This effect is minimized for films stretched to higher ratios. Significantly, corona-induced effects could not be observed with the other experimental techniques, i.e., X-ray diffraction and infrared spectroscopy.
Resumo:
The aim of this study was to evaluate the influence of fluoride-containing solutions on the translucency of flowable composite resins, with respect the immersion time. Flow-It! (FI) and Natural Flow (NF) composite resins and three commercial brands of fluoride-containing solutions (Fluordent, Fluorgard and Oral B) were used. Specimens were prepared and stored in the solutions at 37degreesC, until the measurements were made after the following treatments: T1 - after 1 hour in relative humidity; T2 - after 1 h in solution; T3 - 24 h; T4 - 48 h; T5 - after a week; from T9, the measurements were accomplished weekly, up to 30-day immersion. To obtain translucency values an electrophoresis equipment was employed. Data were submitted to ANOVA and Tukey tests. The results disclosed that NF showed highest values of translucency and was statistically different from FI (p < 0.001). As regards the solutions, Fluordent and Oral B presented similar values and were statistically superior to Fluorgard (p < 0.05). Concerning the immersion time, similar results were observed for the different evaluation periods. It may be concluded that the fluoride-containing solutions affected the translucency of the composite resins, independently of the materials used. Among the tested resins, NF presented the best performance. (C) 2003 Kluwer Academic Publishers.
Resumo:
The phase transition from the non-polar a-phase to the polar beta-phase of poly(vinylidene fluoride) (PVDF) has been investigated using micro-Raman spectroscopy, which is advantageous for being a non-destructive technique. Films of alpha-PVDF were subjected to stretching under controlled rates and at 80 degrees C, the transition to beta-PVDF being monitored by the decrease in the Raman band at 794 cm(-1) characteristic of the a-phase, with the concomitant increase in the 839 cm(-1) band characteristic of the beta-phase. Poling with negative corona discharge was found to affect the alpha-PVDF morphology improving the Raman bands related to this crystalline phase. This effect is minimized for films stretched to higher ratios. Significantly, corona-induced effects could not be observed with the other experimental techniques, viz. X-ray diffraction and infrared spectroscopy.
Resumo:
Fluoride toothpastes are a risk factor for the development of dental fluorosis. Products with low fluoride content offer a higher security, but their effectiveness must be proven. The aim of this in vitro study was to compare two acidified toothpastes with low fluoride concentration (412 and 550 mu g F/g) with neutral toothpastes. Bovine enamel blocks were selected by surface microhardness (SMH) and randomized to twelve groups of 13, according to the fluoride concentration in toothpaste (placebo, 275, 412, 550 or 1,100 jig F/g) and pH (7.0 or 5.5). Two commercially available toothpastes were also studied: a 1,100-mu g F/g, pH 7.0 paste (positive control) and a children's paste (500 mu g F/g, pH 7.0). The blocks were subjected to pH cycling for 7 days. The toothpaste treatment was done twice daily. Surface and cross-sectional microhardnesses were assessed to calculate the percentage change of SMH (%SMH) and the mineral loss (Delta Z). The amount of fluoride, calcium and phosphorus in the solutions after the pH cycling was also analyzed. Compared to neutral toothpastes, the acidified toothpastes reduced the %SMH in all F concentrations. Higher F and lower Ca and P concentrations were found in solutions for the acidified toothpastes. Regarding AZ, only the positive control, 1,100-mu g F/g (acidified and neutral) groups were not statistically different. The acidified toothpastes showed a dose-response relationship with all variables. For the low-fluoride toothpastes evaluated, only the 550-mu g F/g acidified paste had the same anticariogenic action as the 1,100-mu g F/g neutral paste.
Resumo:
A microactuator made from poly(vinylidene fluoride) (PVDF), a piezoelectric polymer, was fabricated to control the gas flow rate through a glass micronozzle. The actuator was formed by gluing together two PVDF sheets with opposite polarization directions. The sheets were covered with thin conducting films on one side, that were then used as electrodes to apply an electric field to move the valve. The actuator has a rectangular shape, 3 mm x 6 mm. The device was incorporated with a micronozzle fabricated by a powder blasting technique. Upon applying a DC voltage across the actuator electrodes, one sheet expands while the other contracts, generating an opening motion. A voltage of +300 V DC was used to open the device by moving the actuator 30 mu m, and a voltage of -200 V DC was used to close the device by moving the actuator 20 mu m lower than the relaxed position. Flow measurements were performed in a low-pressure vacuum system, maintaining the microvalve inlet pressure constant at 266 Pa. Tests carried out with the actuator in the open position and with a pressure ratio (inlet pressure divided by outlet pressure) of 0.5, indicated a flow rate of 0.36 sccm. In the closed position, and with a pressure ratio of 0.2, a flow rate of 0.32 sccm was measured.
Resumo:
The conditions for processing and doping of blends of poly(o-alkoxyaniline)s and poly(vinylidene fluoride) were investigated. Flexible, free-standing and stretchable films of blends of various compositions were obtained by casting. A low percolation threshold was observed with the onset of conductivity at low polyalkoxyaniline contents (i.e. 5%). Interestingly, these blends displayed electrochromism with colour changes similar to those of the parent conducting polymer, as observed from cyclic voltammetry measurements. This behaviour is seen even for low contents of the conducting polymer, indicating that a continuous conducting pathway, which is capable of exchanging charge, is formed within the insulating matrix.
Resumo:
This study aimed to determine the lag time between increased fluoride (F) intake and F detection in human nails, as well as the influence of nails growth rate and length on this. Ten 20- to 35-year-old volunteers received 1.8 mg F daily, for 30 days. Nail growth rate and length were determined for all fingernails and toenails. Nail samples were collected at the beginning of the study and every 2 weeks (15 collections in all) and F concentrations were determined. The growth rate was statistically higher in fingernails than in toenails. No statistically significant differences were observed between right and left sides. Growth rate was significantly greater for big toenails than for the other toenails, but this pattern was not found for fingernails. The estimated mean lag times for F detection in fingernails and toenails were 101 and 123 days, respectively. An apparent increase in fingernail F concentrations was observed 84 days after the beginning of the study, although this was not statistically different from baseline. For toenails, statistically significant increases in F concentration in relation to baseline were observed 112 and 140 days after increased F ingestion. These increases occurred within the 95% confidence intervals for the calculated mean lag time for fluoride detection in nails. Considering the large amount of sample provided by the big toenails, together with their faster growth rate, as well as the fact that toenails are less prone to environmental contamination, our data suggest that big toenails are more suitable biomarkers of fluoride intake.