80 resultados para Plug Flow With Axial Dispersion Model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Watersheds are considered important study units when it comes to environmental planning, with regard to the optimal use of water resources. Water scarcity is predicted and feared by many societies, and proves to be an increasingly tangible problem nowadays. Still from the perspective of extreme events, this dissertation considers the study of flood waves in the sub-basin of the stream Claro, which belongs to the Corumbataí watershed. - SP, since thay can also have devastating effects for the population, A Decision Support System for Flood Routing Analysis in Complex Basins, ABC 6 software was applied in order to obtain hydrographs and peak flows in the sub-basin of the stream Claro, for return periods of 10 and 100 years, aiming to comprise events of different magnitudes. The model Soil Conservation Service (SCS) and the triangular SCS hydrograph were adopted for the simulations. Simultaneously, the Kokei Uehara method was applied for the obtainment of peak flow values under the same conditions, seeking to compare results. Data collection was performed using geoprocessing tools. For data entry in ABC 6, the fragmentation of sub-basin of the stream Claro was necessary, which generated 7 small watersheds, in order to fulfill a software demand, as the maximum drainage area it accepts is 50km² for each watershed analyzed. For RT = 10 and 100 years, respectively, the results of peak flow with use of ABC 6 were 46.10 and 95.45 m³/s, while for Kokei Uehara method, the results were 47.17 and 65.26 m³/s. The adoption of a single value of discretization time for all watersheds was indicated as limitation of ABC 6, which interfered in the final results. Kokei method Uehara considered the sub-basin of the stream Claro as a whole, which reduced the error accumulation probability

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The numeric simulation is an important tool applied in understanding the dynamics of groundwater flow. In a hydrogeological model the processes responsible for groundwater flow are described by numerical formulations that allow the simplification, representation and understanding of the dynamics of the Aquifer System. In this work, a steady state groundwater flow simulation of Urucuia Aquifer System (UAS) part of the Corrente river basin was conducted, using the finite element method through software FEFLOW, to understand the dynamics of groundwater flow and quantify the hydrologic balance. The aquifer system Urucuia lodges in the São Francisco hydrogeological province and corresponds to a set of interconnected aquifers that occur in rocks from Urucuia group in the Urucuia sub-basin described by Campos e Dardenne (1997). The system is a porous media one, in a shape of a thick table mountain, consisting essentially of sandstones. The Corrente river basin is located in UAS in Western State of Bahia and it's one of the main units to maintaining permanent flow (Q95) and average natural flow of the São Francisco river. The simulation performed in this work obtained the following results for the modelled region: horizontal hydraulic conductivity of 3 x 10-4 m/s and vertical one 6 x 10-5 m/s; maximum recharge of 345 mm and minimum of 85 mm/a. It was concluded that: (1) regional groundwater flow has eastbound; with an exception of the extreme northeast portion, where the flow has opposite direction; (2) there are smaller water side dividers with an approximate direction EW, that guide the flow of water to the drainage that cut the aquifer; and (3) the UAS at Corrente river basin can be understood as a free regional aquifer system, isotropic and homogeneous. Regionally, the small lithological variations present in the Urucuia group can be neglected and do not exhibit significant influences on the dynamics of ground water flow

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)