231 resultados para Plasma surface modification


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Titanium and its alloys has been widely used as materials for metallic biomaterials implants are usually employed to restore the hard tissue function, being used for artificial joints and bones, synthetic plates, crowns, dental implants and screws . Objective of this work was the surface modification of Ti-alloy 25Ta from biomimetic surface treatment of employment and deposition of polymer by electrospinning. The league was obtained from the fusion of the pure elements in the arc furnace with controlled atmosphere. The ingots were subjected to heat treatment, cold forged and sectioned discs with 13 mm diameter and 3 mm thick. Two surface treatments was evaluated, biomimetic and electrospinning with PCL fiber. The biomimetic treatment was performed involving alkaline treatment for three molarities 1.5M, 3M and 5M with immersion in SBF. The electrospinning was performed using PCL polymer alloy surface after the alkali treatment Ti25Ta 1M. For this group the polymer coated surfaces were immersed in calcium phosphate containing solution for immobilization of apatite. The results were compared with previous studies using surface treatment group to verify hydroxyapatite formation on the sample surface and it is concluded that the best condition is biomimetic treatment with 5M alkali treatment and heat treatment at 80 ° C for 72 hours

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Titanium has proven its suitability as an implant material in surgery over many years. Excellent biocompatibility and corrosion resistance are outstanding features. Implant surfaces always causes concern and interest in scientific communities, due to its close relationship with the time required for osseointegration. Surface modification can be performed by several methods, being laser irradiation one of them. Titanium implants with two different surfaces were inserted in rabbits: Group I (G-I: machined surface, control group), and group II (G-II: laser irradiated, test group) being processed 30 and 60 days after surgery for histological analysis. Surface characterization was performed with SEM-EDS, contact angle measurement, and mean roughness (Ra) parameters. Surface analysis in the GII group showed a nanomorphology affected by melt and quick solidification zones following laser irradiation (SEM), as well as total wettability and Ra mean values significantly higher than in the G-I group. The laser treatment resulted in a homogenized, porous surface, with increased surface area and volume. Histological analysis of bone-implant contact linear extension (BIC) showed better results in G-II at 30 days (39.26 ± 18.23 and 68.41 ± 13.68 for G-I and G-II groups, respectively). Titanium implants modified by laser irradiation showed important features that may accelerate early osseointegration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Química - IQ

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Química - IQ

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Química - IQ

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)