105 resultados para Pipe joint
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Objectives: To investigate the reliability of regional three-dimensional registration and superimposition methods for assessment of temporomandibular joint condylar morphology across subjects and longitudinally.Methods: The sample consisted of cone beam CT scans of 36 patients. The across-subject comparisons included 12 controls, mean age 41.3 +/- 12.0 years, and 12 patients with temporomandibular joint osteoarthritis, mean age 41.3 +/- 14.7 years. The individual longitudinal assessments included 12 patients with temporomandibular joint osteoarthritis, mean age 37.8 +/- 16.7 years, followed up at pre-operative jaw surgery, immediately after and one-year post-operative. Surface models of all condyles were constructed from the cone beam CT scans. Two previously calibrated observers independently performed all registration methods. A landmark-based approach was used for the registration of across-subject condylar models, and temporomandibular joint osteoarthritis vs control group differences were computed with shape analysis. A voxel-based approach was used for registration of longitudinal scans calculated x, y, z degrees of freedom for translation and rotation. Two-way random intraclass correlation coefficients tested the interobserver reliability.Results: Statistically significant differences between the control group and the osteoarthritis group were consistently located on the lateral and medial poles for both observers. The interobserver differences were <= 0.2 mm. For individual longitudinal comparisons, the mean interobserver differences were <= 0.6 mm in translation errors and 1.2 degrees in rotation errors, with excellent reliability (intraclass correlation coefficient >0.75).Conclusions: Condylar registration for across-subjects and longitudinal assessments is reliable and can be used to quantify subtle bony differences in the three-dimensional condylar morphology.
Resumo:
The electromechanical impedance (EMI) technique has been successfully used in structural health monitoring (SHM) systems on a wide variety of structures. The basic concept of this technique is to monitor the structural integrity by exciting and sensing a piezoelectric transducer, usually a lead zirconate titanate (PZT) wafer bonded to the structure to be monitored and excited in a suitable frequency range. Because of the piezoelectric effect, there is a relationship between the mechanical impedance of the host structure, which is directly related to its integrity, and the electrical impedance of the PZT transducer, obtained by a ratio between the excitation and the sensing signals.This work presents a study on damage (leaks) detection using EMI based method. Tests were carried out in a rig water system built in a Hydraulic Laboratory for different leaks conditions in a metallic pipeline. Also, it was evaluated the influence of the PZT position bonded to the pipeline. The results show that leaks can effectively be detected using common metrics for damage detection such as RMSD and CCDM. Further, it was observed that the position of the PZT bonded to the pipes is an important variable and has to be controlled.
Resumo:
Acoustic techniques have been used for many years to find and locate leaks in buried water distribution systems. Hydrophones and accelerometers are typically used as sensors. Although geophones could be used as well, they are not generally used for leak detection. A simple acoustic model of the pipe and the sensors has been proposed previously by some of the authors of this paper, and their model was used to explain some of the features observed in measurements. However, simultaneous measurements of a leak using all three sensor-types in controlled conditions for plastic pipes has not been reported to-date and hence they have not yet been compared directly. This paper fills that gap in knowledge. A set of measurements was made on a bespoke buried plastic water distribution pipe test rig to validate the previously reported analytical model. There is qualitative agreement between the experimental results and the model predictions in terms of the differing filtering properties of the pipe-sensor systems. A quality measure for the data is also presented, which is the ratio of the bandwidth over which the analysis is carried out divided by the centre frequency of this bandwidth. Based on this metric, the accelerometer was found to be the best sensor to use for the test rig described in this paper. However, for a system in which the distance between the sensors is large or the attenuation factor of the system is high, then it would be advantageous to use hydrophones, even though they are invasive sensors.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The strategic management of information plays a fundamental role in the organizational management process since the decision-making process depend on the need for survival in a highly competitive market. Companies are constantly concerned about information transparency and good practices of corporate governance (CG) which, in turn, directs relations between the controlling power of the company and investors. In this context, this article presents the relationship between the disclosing of information of joint-stock companies by means of using XBRL, the open data model adopted by the Brazilian government, a model that boosted the publication of Information Access Law (Lei de Acesso à Informação), nº 12,527 of 18 November 2011. Information access should be permeated by a mediation policy in order to subsidize the knowledge construction and decision-making of investors. The XBRL is the main model for the publishing of financial information. The use of XBRL by means of new semantic standard created for Linked Data, strengthens the information dissemination, as well as creates analysis mechanisms and cross-referencing of data with different open databases available on the Internet, providing added value to the data/information accessed by civil society.
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
This paper reports on an unmodeled, all-sky search for gravitational waves from merging intermediate mass black hole binaries (IMBHB). The search was performed on data from the second joint science run of the LIGO and Virgo detectors (July 2009-October 2010) and was sensitive to IMBHBs with a range up to similar to 200 Mpc, averaged over the possible sky positions and inclinations of the binaries with respect to the line of sight. No significant candidate was found. Upper limits on the coalescence-rate density of nonspinning IMBHBs with total masses between 100 and 450 M-circle dot and mass ratios between 0.25 and 1 were placed by combining this analysis with an analogous search performed on data from the first LIGO-Virgo joint science run (November 2005-October 2007). The most stringent limit was set for systems consisting of two 88 M-circle dot black holes and is equal to 0.12 Mpc(-3) Myr(-1) at the 90% confidence level. This paper also presents the first estimate, for the case of an unmodeled analysis, of the impact on the search range of IMBHB spin configurations: the visible volume for IMBHBs with nonspinning components is roughly doubled for a population of IMBHBs with spins aligned with the binary's orbital angular momentum and uniformly distributed in the dimensionless spin parameter up to 0.8, whereas an analogous population with antialigned spins decreases the visible volume by similar to 20%.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This research project focused primarily on assessing the impact toughness of the weld and the base material of a steel pipe API 5L X70 submerged arc welded, used to conduct remote oil and gas (linepipes). The analysis followed strictly the Specification for Line Pipe - API 5L Standard, regarding the removal of the specimens of regions-of-proof-long section of the pipe, at 90o and 180o from the welded joint, and mechanical properties of toughness and Charpy-V, both the joint welded as the base material. Specimens of steel tube supplied by Tenaris Confab-SA were sized for tensile and Charpy-V, according to ASTM E 8M and ASTM E23, respectively. The result obtained showed that the API X70 steel tube has high Charpy-V toughness, near to each other at both 90o and 180o from the welded joint of the tube, and both higher than the weld metal. Microstructural and microhardness analysis complemented the present study
Resumo:
Studies about structural integrity are very important when it desires to prevent disasters associated with flaws inherent in materials used in structural components. The welded joints in steel pipes used to conduction and distribution of oil and gas correspond to the regions most susceptible to flaw. Aiming to contribute to this research line, the present study was designed to assess experimentally the structural integrity of welded joints in steel pipes API 5L X70 used in pipeline systems. This assessment is given from tests of CTOD, whose aim is simulate in laboratory the real behaviour of crack from of his propagation on the welded joint obtained by high frequency electric resistance welding. In this case, the analyses are performed from specimens SE(B) obtained directly of steel pipe API 5L X70. The proposed methodology involves tests of CTOD at lower temperature, in order to assess the toughness of material in critical operation conditions. From performance of CTOD tests, was possible assess the toughness of welded joints in terms of quantity through CTOD parameter and in terms of quality from behaviour of curve load versus CMOD. In this study, also, sought to compare CTOD’s results obtained through rules ASTM E1820 (2008) and BS 7448 (1991). Although the two standards cited previously have adopted different parameters to calculated the value of CTOD, concluded that the values of CTOD tend to converge for a common value
Resumo:
On the grounds of the great advances achieved over recent years, the process HF/ERW (High-Frequency/Electric Resistance Welding)welded pipe have played an active role in the oil and gas industry for deep water applications, at high and extremely low temperatures, under high pressure and in highly corrosive environments, gradually replacing manufactured pipes by other processes. However, studies have shown that defects in the welded joints are a the leading causes of pipelines failures, which has required the determination of toughness values in this region, in compliance with the strict recommendations of the codes and standards with manufacturers and construction companies, on the oil and gas sector. As part of the validation process required toughness values, this research project focuses on a microstructural analysis in HF / ERW tubes microalloyed, steel grade API 5CT P110, designed to explore oil and gas in deep waters, the subject of strategic relevance to the country because of the recent discoveries in the Santos mega fields: Tupi and Libra (pre-salt). In this scientific work will be presented and discussed the results of mechanical tensile and Charpy, a few CTOD tests curves (showing the trend of toughness values to be obtained), and the microstructures of the base material obtained by optical microscopy, with special emphasis on the formation of nonmetallic inclusions in the welded joint
Resumo:
This work aims to analyze the toughness of a welded joint in the presence of a crack through the analysis of maximum tension the material can withstand the presence of this type of defect, since a discontinuity is likely to occur in this type of joint and its detection and its design is simple, using non-destructive testing techniques. The study will be conducted through the CTOD test - Crack-Tip Opening Displacement, with type specimens SE (B) - Single Edge Bend taken from a weld in the L-C position in relation to the length (longitudinal axis) of a test tube. The main idea is to simulate the welding conditions for the manufacture of industrial pipes, made in boiler shops (pipe-shop) within petrochemical plants. These pipes are often subject to operation with flammable and toxic subjected to high pressures and temperatures, where one can break the line can cause irreparable damage to the plant, the environment and the health of surrounding communities. With this study we evaluate whether the weld metal has the same properties as fracture toughness of the base material. This study shows the importance of using a qualified welding procedure for performing quality welds while maintaining the properties of the fracture toughness of the base metal. It was found from the results of tests using a welding procedure described for carrying out welding ensures mechanical properties very close to the base metal, which in terms of design is great, since one can ensure that the weld will the same characteristics of the base metal specified for the assembly of the pipe
Resumo:
On the grounds of the great advances achieved over recent years, the process HF/ERW (High-Frequency/Electric Resistance Welding)welded pipe have played an active role in the oil and gas industry for deep water applications, at high and extremely low temperatures, under high pressure and in highly corrosive environments, gradually replacing manufactured pipes by other processes. However, studies have shown that defects in the welded joints are a the leading causes of pipelines failures, which has required the determination of toughness values in this region, in compliance with the strict recommendations of the codes and standards with manufacturers and construction companies, on the oil and gas sector. As part of the validation process required toughness values, this research project focuses on a microstructural analysis in HF / ERW tubes microalloyed, steel grade API 5CT N80, designed to explore oil and gas in deep waters, the subject of strategic relevance to the country because of the recent discoveries in the Santos mega fields: Tupi and Libra (pre-salt). In this scientific work will be presented and discussed the results of mechanical tensile and Charpy, a few CTOD tests curves (showing the trend of toughness values to be obtained), and the microstructures of the base material obtained by optical microscopy, with special emphasis on the formation of non-metallic inclusions in the welded joint