131 resultados para Pair distributions
Resumo:
In Bayesian Inference it is often desirable to have a posterior density reflecting mainly the information from sample data. To achieve this purpose it is important to employ prior densities which add little information to the sample. We have in the literature many such prior densities, for example, Jeffreys (1967), Lindley (1956); (1961), Hartigan (1964), Bernardo (1979), Zellner (1984), Tibshirani (1989), etc. In the present article, we compare the posterior densities of the reliability function by using Jeffreys, the maximal data information (Zellner, 1984), Tibshirani's, and reference priors for the reliability function R(t) in a Weibull distribution.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In the context of Bayesian statistical analysis, elicitation is the process of formulating a prior density f(.) about one or more uncertain quantities to represent a person's knowledge and beliefs. Several different methods of eliciting prior distributions for one unknown parameter have been proposed. However, there are relatively few methods for specifying a multivariate prior distribution and most are just applicable to specific classes of problems and/or based on restrictive conditions, such as independence of variables. Besides, many of these procedures require the elicitation of variances and correlations, and sometimes elicitation of hyperparameters which are difficult for experts to specify in practice. Garthwaite et al. (2005) discuss the different methods proposed in the literature and the difficulties of eliciting multivariate prior distributions. We describe a flexible method of eliciting multivariate prior distributions applicable to a wide class of practical problems. Our approach does not assume a parametric form for the unknown prior density f(.), instead we use nonparametric Bayesian inference, modelling f(.) by a Gaussian process prior distribution. The expert is then asked to specify certain summaries of his/her distribution, such as the mean, mode, marginal quantiles and a small number of joint probabilities. The analyst receives that information, treating it as a data set D with which to update his/her prior beliefs to obtain the posterior distribution for f(.). Theoretical properties of joint and marginal priors are derived and numerical illustrations to demonstrate our approach are given. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We compare exact and semiclassical Husimi distributions for the single eigenstates of a one-dimensional resonant Hamiltonian. We find that both distributions concentrate near the unstable fixed points even when these points are made complex by suitably varying a parameter. © 1992 The American Physical Society.
Resumo:
Inelasticity distributions in high-energy p-nucleus collisions are computed in the framework of the interacting gluon model, with the impact-parameter fluctuation included. A proper account of the peripheral events by this fluctuation has shown to be vital for the overall agreement with several reported data. The energy dependence is found to be weak.
Resumo:
We discuss signals for CP violation in μ + μ - → Τ̃ i - Τ̃ j +, where i, j = 1, 2 label the two scalar Τ mass eigenstates. We assume that these reactions can proceed through the production and decay of the heavy neutral Higgs bosons present in supersymmetric models. CP violation in the Higgs sector can be probed through a rate asymmetry even with unpolarized beams, while the CP-odd phase associated with the Τ̃ mass matrix can be probed only if the polarization of at least one beam can be varied. These asymmetries might be O (1).
Resumo:
Classical Monte Carlo calculations have been performed in order to investigate the ability of the TIP4P, SPC, and SPCE water models to reproduce the structural features of liquid water. The simulations were carried out in the NPT ensemble at 4 thermodynamic conditions. The results are compared with recent neutron diffraction data. Essentially, the three models capture equally well the thermodynamic and structural features of water. Although they were parametrized to reproduce the water properties at ambient conditions, the agreement with the experimental pair correlation functions was even better at supercritical conditions. This is because the effective pair potentials have some difficulty to reproduce cooperative interactions, like hydrogen bonds. These interactions are less effective at supercritical conditions, where the liquid behaves roughly like a gas.
Resumo:
We study the pair production of neutral Higgs bosons through gluon fusion at hadron colliders in the framework of the minimal supersymmetric standard model. We present analytical expressions for the relevant amplitudes, including both quark and squark loop contributions, and allowing for mixing between the superpartners of left- and right-handed quarks. Squark loop contributions can increase the cross section for the production of two CP-even Higgs bosons by more than two orders of magnitude, if the relevant trilinear soft breaking parameter is large and the mass of the lighter squark eigenstate is not too far above its current lower bound. In the region of large tan β, neutral Higgs boson pair production might even be observable in the 4b final state during the next run of the Fermilab Tevatron collider. ©1999 The American Physical Society.
Resumo:
We discuss perturbative and non-perturbative strong-interaction effects in the pair production of stop squarks (t̃1) at e+e- colliders. Events with an additional hard gluon allow to detect or exclude t̃1t̃*1 production even in scenarios with very small mass splitting between ti and an invisible lightest supersymmetric particle (LSP). Such events can also help to establish that t̃1 transforms as a triplet under SU(3)C. We also carefully study non-perturbative t̃1 fragmentation, which is currently not well understood: not only is the t̃1 fragmentation function not known very well, but also there are ambiguities in the algorithm employed to model fragmentation. We present numerical results both for CERN LEP-183 and for a proposed future e+e- collider operating at center-of-mass energy s1/2 = 500 GeV.
Resumo:
Bose-Einstein correlations are studied in semileptonic (WW → qq̄lv) and fully hadronic (WW → qq̄qq̄) W-pair decays with the ALEPH detector at LEP at centre-of-mass energies of 172, 183 and 189 GeV. They are compared with those made at the Z peak after correction for the different flavour compositions. A Monte Carlo model of Bose-Einstein correlations based on the JETSET hadronization scheme was tuned to the Z data and reproduces the correlations in the WW → qq̄lv events. The same Monte Carlo reproduces the correlations in the WW → qq̄qq̄ channel assuming independent fragmentation of the two W's. A variant of this model with Bose-Einstein correlations between decay products of different W's is disfavoured. (C) 2000 Published by Elsevier Science B.V.
Resumo:
The purpose of this paper is to show the symmetric relations that appear between the coefficients of some even and odd extensions of the M-fractions related to a certain kind of symmetric strong Stieltjes distribution.
Resumo:
We develop a relativistic quark model for pion structure, which incorporates the nontrivial structure of the vacuum of quantum chromodynamics as modelled by instantons. Pions are bound states of quarks and the strong quark-pion vertex is determined from an instanton induced effective Lagrangian. The interaction of the constituents of the pion with the external electromagnetic field is introduced in gauge invariant form. The parameters of the model, i.e., effective instanton radius and constituent quark mass, are obtained from the vacuum expectation values of the lowest dimensional quark and gluon operators and the low-energy observables of the pion. We apply the formalism to the calculation of the pion form factor by means of the isovector nonforward parton distributions and find agreement with the experimental data. © 2000 Elsevier Science B.V.
Resumo:
We study the potential of hadron colliders in the search for the pair production of neutral Higgs bosons in the framework of the minimal supersymmetric standard model. We perform a detailed signal and background analysis, working out efficient kinematical cuts for the extraction of the signal. The important role of squark loop contributions to the signal is re-emphasized. If the signal is sufficiently enhanced by these contributions, it could even be observable at the next run of the upgraded Tevatron collider in the near future. At the LHC the pair production of light and heavy Higgs bosons might be detectable simultaneously.
Resumo:
Nonperturbative functions that parametrize off-diagonal hadronic matrix elements of the light-cone leading-twist quark operators are considered. These functions are calculated within the proposed relativistic quark model allowing for the nontrivial structure of the QCD vacuum, special attention being given to gauge invariance. Hadrons are treated as bound states of quarks; strong-interaction quark-pion vertices are described by effective interaction Lagrangians generated by instantons. The parameters of the instanton vacuum, such as the effective radius of the instanton and the quark mass, are related to the vacuum expectation values of the quark-gluon operators of the lowest dimension and to low-energy pion observables. © 2000 MAIK Nauka/Interperiodica.