205 resultados para POLYMERIZATION KINETICS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kinetics of short-range ordering (SRO) in Ag with 21, 23 and 28 at% Zn is investigated by residual resistometry during isochronal and isothermal heat treatment for different states of post-deformation defect annealing after cold-rolling to about 30 and 60% thickness reduction. Resistivity changes due to pure ordering can be separated from the as-measured total resistivity change which includes defect annealing. Although the initial state of SRO of the as-rolled material can be estimated to be comparably low, for as-rolled and partially annealed states by appropriate thermal treatment evolution of SRO is achieved which corresponds quite well to that of recrystallized samples. It is observed, however, that quenched-in surplus vacancies contribute considerably to the ordering process for the recrystallized state and that this contribution is still increased by the grain growth during the final stage of annealing. It therefore turns out that SRO-kinetics under equilibrium vacancy conditions can be better observed in a state of post-deformation annealing, for which deformation induced point defects are annealed-out, but a relatively high dislocation density is still present to act as a vacancy sink. Copyright (C) 1996 Acta Metallurgica Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystal nucleation rates of a metastable phase (chi) on the surface of a near stoichiometric cordierite glass were determined for temperatures between 839 and 910 degrees C (T-g similar to 800 degrees C). The surface nucleation kinetics of that phase on our glass, as well as on a stoichiometric glass (2 MgO-2Al(2)O(3)-5SiO(2)) studied by other authors, were analysed in terms of the classical nucleation theory; for the first time. It was shown that the effective interfacial energy for surface nucleation is substantially lower than that for homogeneous volume nucleation in silicate glasses, vindicating the assumption of heterogeneous nucleation on free glass surfaces. The average wetting angle between the nucleating crystals and the active solid particles was estimated to be around 46 degrees C. The pre-exponential constant was several orders of magnitude higher than the theoretical values as found for volume homogeneous nucleation in oxide glasses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An understanding of isoniazid (INH) drug resistance mechanism in Mycobacterium tuberculosis should provide significant insight for the development of newer anti-tubercular agents able to control INH-resistant tuberculosis (TB). The inhA-encoded 2-trans enoyl-acyl carrier protein reductase enzyme (InhA) has been shown through biochemical and genetic studies to be the primary target for INH. In agreement with these results, mutations in the inhA structural gene have been found in INH-resistant clinical isolates of M. tuberculosis, the causative agent of TB. In addition, the InhA mutants were shown to have higher dissociation constant values for NADH and lower values for the apparent first-order rate constant for INH inactivation as compared to wild-type InhA. Here, in trying to identify structural changes between wild-type and INH-resistant InhA enzymes, we have solved the crystal structures of wild-type and of S94A, I47T and I21V InhA proteins in complex with NADH to resolutions of, respectively, 2.3 angstrom, 2.2 angstrom, 2.0 angstrom, and 1.9 angstrom. The more prominent structural differences are located in, and appear to indirectly affect, the dinucleotide binding loop structure. Moreover, studies on pre-steady-state kinetics of NADH binding have been carried out. The results showed that the limiting rate constant values for NADH dissociation from the InhA-NADH binary complexes (k(off)) were eleven, five, and tenfold higher for, respectively, I21V, I47T and S94A INH-resistant mutants of InhA as compared to INH-sensitive wildtype InhA. Accordingly, these results are proposed to be able to account for the reduction in affinity for NADH for the INH-resistant InhA enzymes. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Short-range ordering (SRO) kinetics was investigated under temperature conditions of isochronal and isothermal annealing in completely recrystallized Ag-21, -23, -28 at.% Zn by residual resistometry. The SRO kinetics deviated considerably from a single exponential relaxation process and was therefore analysed using a log-normal spectrum of SRO relaxation times. This yields activation enthalpies for changes in the degree of SRO in good accordance with literature data. Isothermal SRO relaxation of undeformed samples was compared with that of cold-rolled and partially annealed samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

5-Nitro-8-hydroxyquinoline (B) and 5,7-dinitro-8-hydroxyquinoline (C) were obtained from nitration of 8-hydroxyquinoline (A) and purified in acetone medium and under heating in which the formation of (B) or (C) depends on the amount of HNO3 added. TG curves present mass loss in only one step before and after the melting point (T-m=76 degreesC (A) and 180 degreesC (B)) in different proportions as a function of the heating rate, characterising the sublimation and the volatilisation processes, respectively. The thermal stability of the compounds follow the order: A (77 degreesC)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal behavior and non-isothermal kinetics of thermal decomposition of three different kinds of composting of the USR like: stack with drilled PVC tubes (ST), revolved stack (SR) and stack with material of structure (SM), from the usine of composing of Araraquara city, São Paulo state, Brazil, within a period of 132 days of composting were studied.Results from TG, DTG and DSC curves obtained on inert atmosphere indicated that the cellulosic fraction present, despite the slow degradation during the composting process, is thermally less stable than other substances originated from that process. Due to that behavior, the cellulosic fraction decomposition could be kinetically evaluated through non-isothermal methods of analysis.The values obtained were: average activation energy, E-a=248, 257 and 259 kJ mol(-1) and pre-exponential factor, logA=21.4, 22.5, 22.7 min(-1), to the ST, SR and SM, respectively.From E-a and logA values and DSC curves, Malek procedure could be applied, suggesting that the SB (Sestak-Berggren) kinetic model is the appropriated one to the first thermal decomposition step.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Statement of problem. Although most of the physical properties of denture base resin polymerized by microwave energy have been shown to be similar to resins polymerized by the conventional heat polymerization method, the presence of porosity is a problem.Purpose. This study evaluated the effect of different microwave polymerization cycles on the porosity of a denture base resin designed for microwave polymerization.Material and methods. Thirty-two rectangular resin specimens (65 X 40 X 5 mm) were divided into 3 experimental groups (A, B, and C; Onda-Cryl, microwave-polymerized resin) and I control group (T; Classico, heat-polymerized resin), according to the following polymerization cycles: (A) 500 W for 3 minutes, (B) 90 W for 13 minutes + 500 W for 90 seconds, (C) 320 W for 3 minutes + 0 W for 4 minutes + 720 W for 3 minutes, and (T) 74degreesC for 9 hours. Porosity was calculated by measurement of the specimen volume before and after its immersion in water. Data were analyzed using 1-way analysis of variance (alpha = .05).Results. The mean values and SDs of the percent mean porosity were: A = 1.05% +/- 0.28%, B = 0.91% +/- 0.15%, C = 0.88% +/- 0.23%, T = 0.93% +/- 0.23%. No significant differences were found in mean porosity among the groups evaluated.Conclusion. Within the limitations of this study, a denture base resin specifically designed for microwave Polymerization tested was not affected by different polymerization cycles. Porosity was similar to the conventional heat-polymerized denture base resin tested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To evaluate the linear polymerization shrinkage (LPS) and the effect of polymerization shrinkage of a resin composite and resin-dentin bond strength under different boundary conditions and filling techniques.Methods: Two cavities (4 x 4 x 2 MM) were prepared in bovine incisors (n = 30). The teeth were divided into three groups, according to boundary conditions: In group TE, the total-etch technique was used. In group EE, only enamel was conditioned, and in group NE, none of the watts of the cavities were conditioned. A two-step adhesive system was applied to all cavities. The resin composite was inserted in one (B) or three increments (1), and tight-cured with 600 mW/cm(2) (80 s). The LPS (%) was measured in the top-bottom direction, by placing a probe in contact with resin composite during curing. Enamel and total mean gap widths were measured (400 x) in three slices obtained after sectioning the restorations. Then, the slices were sectioned again, either to obtain sticks from the adhesive interface from the bottom of the cavity or to obtain resin composite sticks (0.8 mm(2)) to be tested for tensile strength (Kratos machine, 0.5 mm/min). The data was subjected to a two-way repeated measures ANOVA and Tukey's test for comparison of the means (alpha = 0.05).Results: the highest percentage of LPS was found for the TE when bulk fitted, and the lowest percentage of LPS was found in the Hand NE when incrementally fitted. The resin dentin bond strength was higher and the total mean gap width was tower for TE group; no significant effect was detected for the main factor fitting techniques. No difference was detected for the tensile strength of resin composite among the experimental groups.Conclusions: the filling technique is not able to minimize effects of the polymerization shrinkage, and bonding to the cavity watts is necessary to assure reduced mean gap width and high bond strength values. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives. This study compared the residual monomer (RM) in four hard chair-side reline resins (Duraliner II-D, Kooliner-K, Tokuso Rebase Fast-TRF and Ufi Gel hard-UGH) and one heat-polymerized denture base resin (Lucitone 550-L), which was processed using two polymerization cycles (short-LS and long-LL). It was also investigated the effect of two after polymerization treatments on this RM content.Methods. Specimens (n = 18) of each material were produced following the manufacturers' instructions and then divided into three groups. Group I specimens were left untreated (GI-control). Specimens of group II (GII) were given post-polymerization treatment by microwave irradiation. In group III (GIII), specimens were submitted to immersion in water at 55 degrees C (reline resins-10 min; denture base resin L-60min). The RM was analyzed using high performance liquid chromatography (HPLC) and expressed as a percentage of RM. Data were analyzed by two-way ANOVA followed by Tukey's test (alpha = 0.05).Results. Comparing control specimens, statistical differences were found among all materials (p < 0.05), and the results can be arranged as K (1.52%) > D (0.85%) > UGH (0.45%) > LL (0.24%) > TRF (0.14%) > LS (0.08%). Immersion in hot water (GIII) promoted a significant (p < 0.05) reduction in the RM for all materials evaluated compared to control (GI), with the exception of LL specimens. Materials K, UGH and TRF exhibited significantly (p < 0.05) lower values of RM after microwave irradiation (GII) than in the control specimens.Significance. The reduction in RM promoted by water-bath and microwave post-polymerization treatments could improve the mechanical properties and biocompatibility of the relining and denture base materials. (c) 2006 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated, by in situ small-angle X-ray scattering (SAXS), the kinetics of formation of zinc oxide colloidal suspensions obtained after refluxing alcoholic solution of zinc acetate and catalysed by lithium hydroxide. The experimental results demonstrate that the suspensions are composed of colloidal spheroidal particles with a multimodal size distribution. The average radius of the main mode, approximately 2 nm, is invariant but the number of these basic particles continuously increases for increasing hydrolysis reaction time. The other two modes correspond to particles with average radii close to 6 and 10 nm, respectively. The larger particles are formed by coagulation of the smaller ones. (C) 1999 Elsevier B.V. B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A nonisothermal study of the kinetics of the nanoporosity elimination in monolithic silica xerogels, prepared from acid and ultrasound catalyzed hydrolysis of tetraethylortosilicate (TEOS), has been carried out by means of in situ linear shrinkage measurements performed with different heating rates. The study could be applied up to almost alpha similar to 0.6 of the volume fraction alpha of eliminated pores. The activation energy was found increasing from about 3.2 x 10(2) kJ/mol for alpha similar to 0.06 up to about 4.4 x 10(2) kJ/mol for alpha. similar to 0.44. The sintering process accompanying the nanopore elimination in this set of xerogels is in agreement with a viscous flux sintering process with the hydroxyl content diminishing with the volume fraction of eliminated pores. All the volume fraction of eliminated pores versus temperature (T) curves can be matched onto a unique curve with an appropriate rescaling of the T axis, independent of the heating rate. This scaling property suggests that the path of sintering seems the same, regardless of the heating rate; the difference is that the rate is faster at higher temperature.