120 resultados para Order systems
Resumo:
The main objective this article is describe a methodology for the calculation of the profile of the electric field in the level soil and proximities originated by electric energy transmission systems real and in operation in the country. It also is commented the equation used and your computational implementation in order to agile and to optimize the studies. The results of simulations were just presented for the transmission system in the voltage class 500 kV for simplify the understanding and space restriction in the article, very although five others types of configurations have also been used in the complete study with very voltages and respective classes. The results were animating and very nearby of values well-known of electric field of other and publications traditional in the area. The graphic exits of program for better visual comprehension and understanding went in accomplished in the plan and in the space © 2010 IEEE.
Resumo:
This paper presents an approach for probabilistic analysis of unbalanced three-phase weakly meshed distribution systems considering uncertainty in load demand. In order to achieve high computational efficiency this approach uses both an efficient method for probabilistic analysis and a radial power flow. The probabilistic approach used is the well-known Two-Point Estimate Method. Meanwhile, the compensation-based radial power flow is used in order to extract benefits from the topological characteristics of the distribution systems. The generation model proposed allows modeling either PQ or PV bus on the connection point between the network and the distributed generator. In addition allows control of the generator operating conditions, such as the field current and the power delivery at terminals. Results on test with IEEE 37 bus system is given to illustrate the operation and effectiveness of the proposed approach. A Monte Carlo Simulations method is used to validate the results. © 2011 IEEE.
Resumo:
This work presents the evaluation of different power electronic integrated converters suitable for photovoltaic applications, in order to reduce complexity and improve reliability. The rated voltages available in Photovoltaic (PV) modules have usually low values for applications such as regulated output voltages in stand-alone or grid-connected configurations. In these cases, a boost stage or a transformer will be necessary. Transformers have low efficiencies, heavy weights and have been used only when galvanic isolation is mandatory. Furthermore, high-frequency transformers increase the converter complexity. Therefore, the most usual topologies use a boost stage and one inverter stage cascaded. However, the complexity, size, weight, cost and lifetime might be improved considering the integration of both stages. In this context, some integrated converters are analyzed and compared in this paper in order to support future evaluations and trends for low power single-phase inverters for PV systems. Power decoupling, MPPT and Tri-State modulations are also considered. Finally, simulation and experimental results are presented and compared for the analyzed topologies. © 2011 IEEE.
Resumo:
Distributed Generation, microgrid technologies, two-way communication systems, and demand response programs are issues that are being studied in recent years within the concept of smart grids. At some level of enough penetration, the Distributed Generators (DGs) can provide benefits for sub-transmission and transmission systems through the so-called ancillary services. This work is focused on the ancillary service of reactive power support provided by DGs, specifically Wind Turbine Generators (WTGs), with high level of impact on transmission systems. The main objective of this work is to propose an optimization methodology to price this service by determining the costs in which a DG incurs when it loses sales opportunity of active power, i.e, by determining the Loss of Opportunity Costs (LOC). LOC occur when more reactive power is required than available, and the active power generation has to be reduced in order to increase the reactive power capacity. In the optimization process, three objectives are considered: active power generation costs of DGs, voltage stability margin of the system, and losses in the lines of the network. Uncertainties of WTGs are reduced solving multi-objective optimal power flows in multiple probabilistic scenarios constructed by Monte Carlo simulations, and modeling the time series associated with the active power generation of each WTG via Fuzzy Logic and Markov Chains. The proposed methodology was tested using the IEEE 14 bus test system with two WTGs installed. © 2011 IEEE.
Resumo:
This work presents the stage integration in power electronics converters as a suitable solution for solar photovoltaic inverters. The rated voltages available in Photovoltaic (PV) modules have usually low values for applications such as regulated output voltages in stand-alone or grid-connected configurations. In these cases, a boost stage or a transformer will be necessary. Transformers have low efficiencies, heavy weights and have been used only when galvanic isolation is mandatory. Furthermore, high-frequency transformers increase the converter complexity. Therefore, the most usual topologies use a boost stage and one inverter stage cascaded. However, the complexity, size, weight, cost and lifetime might be improved considering the integration of both stages. These are the expected features to turn attractive this kind of integrated structures. Therefore, some integrated converters are analyzed and compared in this paper in order to support future evaluations and trends for low power single-phase inverters for PV systems. © 2011 IEEE.
Resumo:
Networked control systems (NCS) are distributed control system in which sensors, actuators and controllers are physically separated and connected through communication networks. NCS represent the evolution of networked control architectures providing greater modularity and control decentralization, ease maintenance and diagnosis and lower cost of implementation. A recent trend in this research topic is the development of NCS using wireless networks which enable interoperability between existing wired and wireless systems. This paper presents the feasibility analysis of using a serial RS-232 to Bluetooth converter as a wireless sensor link in NCS. In order to support this investigation, relevant performance metrics for wireless control applications such as jitter, time delay and messages lost are highlighted and calculated to evaluate the converter capabilities. In addition the control performance of an implemented motor control system using the converter is analyzed. Experimental results led to the conclusion that serial RS-232 Bluetooth converters can be used to implement wireless networked control systems (WNCS) providing transmission rates and closed control loop times which are acceptable for NCS applications. © 2011 IEEE.
Resumo:
Non-conventional database management systems are used to achieve a better performance when dealing with complex data. One fundamental concept of these systems is object identity (OID), because each object in the database has a unique identifier that is used to access and reference it in relationships to other objects. Two approaches can be used for the implementation of OIDs: physical or logical OIDs. In order to manage complex data, was proposed the Multimedia Data Manager Kernel (NuGeM) that uses a logical technique, named Indirect Mapping. This paper proposes an improvement to the technique used by NuGeM, whose original contribution is management of OIDs with a fewer number of disc accesses and less processing, thus reducing management time from the pages and eliminating the problem with exhaustion of OIDs. Also, the technique presented here can be applied to others OODBMSs. © 2011 IEEE.
Resumo:
This paper presents a mixed-integer linear programming approach to solving the optimal fixed/switched capacitors allocation (OCA) problem in radial distribution systems with distributed generation. The use of a mixed-integer linear formulation guarantees convergence to optimality using existing optimization software. The results of one test system and one real distribution system are presented in order to show the accuracy as well as the efficiency of the proposed solution technique. © 2011 IEEE.
Resumo:
This paper presents novel simulation tools to assist the lecturers about learning processes on renewable energy sources, considering photovoltaic (PV) systems. The PV behavior, functionality and its interaction with power electronic converters are investigated in the simulation tools. The main PV output characteristics, I (current) versus V (voltage) and P (power) versus V (voltage), were implemented in the tools, in order to aid the users for the design steps. In order to verify the effectiveness of the developed tools the simulation results were compared with Matlab. Finally, a prototype was implemented with the purpose to compare the experimental results with the results from the proposed tools, validating its operational feasibility. © 2011 IEEE.
Resumo:
Influence of cutting instruments and The aim of this study was to analyze the hybrid layer in noncarious dentin prepared by different cutting instruments and restored with composite resin. The cavities were randomly prepared in 40 specimens using a high-speed diamond bur (KG Sorensen 1013) and an ultrasonic tip (CVDentus C22). The cavities were restored with composite resin by varying the adhesive system between the Adper™ Single Bond (2 x 1 system, primer+adhesive) and the Prompt L-Pop™ (3 x 1 system, self-etching). The restorations were hemisected longitudinally and analyzed in the SEM (Scanning electron microscopy) in order to evaluate the hybrid layer and resinous tags characteristics, using scores ranging from 1 to 6. The Pearson test revealed a high correlation coefficient and good significance levels for both intra- and inter-raters values (r=0.90). The data were statistically analyzed using the Mann-Whitney test (P≤0.05). A larger proportion of regular hybrid layers with numerous tags were observed in the dentin prepared using the high-speed diamond burs and restored with a 2 × 1 adhesive system. Alternatively, the 3 × 1 adhesive system promoted the generation of a thin hybrid layer with few tags. After preparation using an ultrasonic tip revealed few or no tags after the preparation and 2 × 1 or 3 × 1 adhesive system application. The high-speed diamond burs produced a dentin surface that was more favorable to restorative material adhesion than the ultrasonic tips, regardless of the adhesive system used.
Resumo:
The system reliability depends on the reliability of its components itself. Therefore, it is necessary a methodology capable of inferring the state of functionality of these components to establish reliable indices of quality. Allocation models for maintenance and protective devices, among others, have been used in order to improve the quality and availability of services on electric power distribution systems. This paper proposes a methodology for assessing the reliability of distribution system components in an integrated way, using probabilistic models and fuzzy inference systems to infer about the operation probability of each component. © 2012 IEEE.
Resumo:
Networked control systems (NCS) are distributed control system where the sensors, actuators and controllers are physically separated and connected through communication networks. NCS represent the evolution of networked control architectures providing greater modularity and control decentralization, ease maintenance and diagnosis and lower cost of implementation. A recent trend in this research topic is the development of NCS using wireless networks (WNCS) enabling interoperability between existing wired and wireless systems. This paper evaluates a serial RS-232 ZigBee device as a wireless sensor link in NCS. In order to support this investigation, relevant performance metrics for wireless control applications such as jitter, time delay and messages lost are highlighted and calculated to evaluate the device capabilities. In addition the control performance of an implemented motor control system using the device is analyzed. Experimental results led to the conclusion that serial RS-232 ZigBee devices can be used to implement WNCS and the use of this device delay information in the PID controller discretization can improve the control performance of the system. © 2012 IEEE.
Resumo:
The main concern in Wireless Sensor Networks (WSN) algorithms and protocols are the energy consumption. Thus, the WSN lifetime is one of the most important metric used to measure the performance of the WSN approaches. Another important metric is the WSN spatial coverage, where the main goal is to obtain sensed data in a uniform way. This paper has proposed an approach called (m,k)-Gur Game that aims a trade-off between quality of service and the increasement of spatial coverage diversity. Simulation results have shown the effectiveness of this approach. © 2012 IEEE.
Resumo:
The scale invariance manifested by the weakly-bound Efimov states implies that all the Efimov spectrum can be merged in a single scaling function. By considering this scaling function, the ratio between two consecutive energy levels, E3 (N+1) and E3 (N), can be obtained from a two-body low-energy observable (usually the scattering length a), given in units of the three-body energy level N. The zero-ranged scaling function is improved by incorporating finite range corrections in first order of r0/a (r0 is the potential effective range). The critical condition for three-identical bosons in s-wave, when the excited E3 (N+1) state disappears in the 2 + 1 threshold, is given by √E2/E3 (N) ≈ 0.38+0.12(r0/a). © 2012 Springer-Verlag.
Resumo:
The fixed-slope correlation between tetramer and trimer binding energies, observed by Tjon in the context of nuclear physics, is mainly a manifestation of the dominance of the two-nucleon force in the nuclear potential, which makes the four-body scale on the order of the three-body one. In a more general four-boson case, the correlation between tetramer and trimer binding energies has a non-fixed slope, which expresses the dependence on the new scale. The associated scaling function generates a family of Tjon lines. This conclusion relies on a recent study with weakly-bound four identical bosons, within a renormalized zero-range Faddeev-Yakubovsky formalism. © 2012 Springer-Verlag.