78 resultados para Oil well cement
Resumo:
Oil refinery effluents contain many chemicals at variable concentrations. Therefore, it is difficult to predict potential effects on the environment. The Atibaia River (SP, Brazil), which serves as a source of water supply for many municipalities, receives the effluents of one of the biggest oil refinery of this country. The aim of this study was to identify the (eco)toxicity of fresh water sediments under the influence of this oil refinery through neutral red (cytotoxicity) and ethoxyresorufin-O-deethylase (EROD) assays (AhR-mediated toxicity) in RTL-W1 cells (derived from fish liver). Once the refinery captures the waters of Jaguarí River for the development of its activities and discharges its effluents after treatment into the Atibaia River, which then flows into Piracicaba River, sediments from both river systems were also investigated. The samples showed a high cytotoxic potential, even when compared to well-known pollution sites. However, the cytotoxicity of samples collected downstream the effluent was not higher than that of sediments collected upstream, which suggested that the refinery discharges are not the main source of pollution in those areas. No EROD activity could be recorded, which could be confirmed by chemical analyses of polycyclic aromatic hydrocarbons (PAHs) that revealed a high concentration of phenanthrene, anthracene, fluoranthene, and pyrene, which are not EROD inducers in RTL-W1 cells. In contrast, high concentrations of PAHs were found upstream the refinery effluent, corroborating cytotoxicity results from the neutral red assay. A decrease of PAHs was recorded from upstream to downstream the refinery effluent, probably due to dilution of compounds following water discharges. On the other hand, these discharges apparently contribute specifically to the amount of anthracene in the river, since an increase of anthracene concentrations could be recorded downstream the effluent. Since the extrapolation of results from acute toxicity to specific toxic effects with different modes of action is a complex task, complementary bioassays covering additional specific effects should be applied in future studies for better understanding of the overall ecotoxicity of those environments.
Resumo:
Biosurfactants are bioactive agents that can be produced by many different microorganisms. Among those, special attention is given to yeasts, since they can produce many types of biosurfactants in large scale, using several kinds of substrates, justifying its use for industrial production of those products. For this production to be economically viable, the use of residual carbon sources is recommended. The present study isolated yeasts from soil contaminated with petroleum oil hydrocarbons and assessed their capacity for producing biosurfactants in low cost substrates. From a microbial consortium enriched, seven yeasts were isolated, all showing potential for producing biosurfactants in soybean oil. The isolate LBPF 3, characterized as Candida antarctica, obtained the highest levels of production - with a final production of 13.86 g/L. The isolate LBPF 9, using glycerol carbon source, obtained the highest reduction in surface tension in the growth medium: approximately 43% of reduction after 24 hours of incubation. The products obtained by the isolates presented surfactant activity, which reduced water surface tension to values that varied from 34 mN/m, obtained from the product of isolates LBPF 3 and 16 LBPF 7 (respectively characterized as Candida antarctica and Candida albicans) to 43 mN/m from the isolate LPPF 9, using glycerol as substrate. The assessed isolates all showed potential for the production of biosurfactants in conventional sources of carbon as well as in agroindustrial residue, especially in glycerol.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)