169 resultados para Nozzle


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Due to the high industrial competitiveness, the rigorous laws of environmental protection, the necessary reduction of costs, the mechanical industry sees itself forced to worry more and more with the refinement of your processes and products. In this context, can be mentioned the need to eliminate the roundness errors that appear after the grinding process. This work has the objective of verifying if optimized nozzles for the application of cutting fluid in the grinding process can minimize the formation of the roundness errors and the diametrical wear of grinding wheel in the machining of the steel VC 131 with 60 HRc, when compared to the conventional nozzles. These nozzles were analyzed using two types of grinding wheels and two different cutting fluids. Was verified that the nozzle of 3mm of diameter, integral oil and the CBN grinding wheel, were the best options to obtain smaller roundness errors and the lowest diametrical wears of grinding wheels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of salts, detergents and chaotropic agents on mass spectrometric analysis are relatively well understood, mainly due to their actions decreasing the performance of ESI interface in mass spectrometric analysis. However, there are few studies in the literature characterizing the effect of protein stabilization by glycerol, followed in some circumstances by the suppression of protein signal when ESI interface is used. The aim of the present research was to investigate in details the mass spectrometric behavior of some proteins in presence of high levels of glycerol during ESI-MS analysis. Thus, horse heart myoglobin and chicken ovalbumin were used as standard proteins. It was demonstrated that the presence of 1% (v/v) glycerol suppressed the signal of these proteins during the ESI-MS analysis, even when the sample nozzle potential was scanned from 28 to 80 V. However, when the glycerol concentration was decreased to 0.5% (v/v) and the sample cone voltage adjusted to 50 V, a perfect envelope of peaks was observed, allowing the spectrum deconvolution and the molecular mass determination with mass accuracy lower than 0.01% in each situation. A molecular explanation for this suppressive effect and for the analytical overcoming of this difficult is proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The conventional, grinding methods in some cases are not very efficient because the arising of thermal damages in the pieces is very common. Optimization methods of cutting fluid application in the grinding zone are essential to prevent thermal problems from interaction of the wheel grains with the workpiece. surface. The optimization can happen through the correct selection of the cut parameters and development of devices that eliminate air layer effects generated around the grinding wheel. This article will collaborate with the development of an experimentation methodology which allows evaluating, comparatively, the performance of the deflectors in the cutting region to minimize the air layer effect of the high speed of the grinding wheel. The air layers make the cutting fluid jet to dissipate in the machine. An optimized nozzle was used in order to compare the results with the conventional method (without baffles or deflectors) of cutting fluid application. The results showed the high eficciency of the deflectors or baffles in the finish results. Copyright © 2006 by ABCM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Starches and modified starch derivations are used as carriers in the spray drying processing where apparent density is an important characteristic and should be controlled in dehydrated products for pharmaceutical use. In Brazil, the commercial starches are made from corn and cassava, but there are others with potential for extraction. The canna and taro starches were selected because they represent the extremes of granule size and thus allow the effect of this size on the apparent density of spray dried products to be tested. For comparison, commercial cassava and corn starches which are used in spray-drying and have granules of intermediate size, were also tested. The spray-drying process was carried out with a LabPlant SD 04 Spray Dryer, operating at a pressure of 6 lb/in2, air of 7,6 mL/minute, and 1 cm atomizing nozzle. The air inlet temperature was set at 200°C this model does not allow regulating outlet temperature. The spray-dryer products had boldo leaf extract as base, using the four starches as carrier. The dry product was evaluated for humidity, water activity (Aw), granulometry and apparent density. The results showed that the size of the particles, which was a consequence of the size of the starch granules, influenced the apparent density of the spray dried products, which as higher (694, 27 g/mL) for the canna starch and lower (456, 13 g/mL) for taro starch. Corn and cassava starches showed very close and intermediate values, 521,51 and 58,48 g/mL, which also represent the standard range of starch granule size.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work describes a fabrication and test sequence of microvalves installed on micronozzles. The technique used to fabricate the micronozzles was powder blasting. The microvalves are actuators made from PVDF (polivinylidene fluoride), that is a piezoelectric polymer. The micronozzles have convergent-divergent shape with external diameter of 1mm and throat around 230μm. The polymer have low piezoelectric coefficient, for this reason a bimorph structure with dimensions of 2mm width and 4mm of length was build (two piezoelectric sheets were glued together with opposite polarization). Both sheets are recovered with a conductor thin film used as electrodes. Applying a voltage between the electrodes one sheet expands while the other contracts and this generate a vertical movement to the entire actuator. Appling +300V DC between the electrodes the volume flux rate, for a pressure ratio of 0.5, was 0.36 sccm. Applying -200V DC between the electrodes (that means it closed) the volume flux rate was 0.32 sccm, defining a possible range of flow between 0.32 and 0.36 sccm. The third measurement was performed using AC voltage (200V AC with frequency of 1Hz), where the actuator was oscillating. For pressure ratio of 0.5, the flow rate was 0.62 sccm. © 2008 IOP Publishing Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The goal of this research was to evaluate two tips of spraying nozzles (hollow cone nozzle and two flat fan nozzle annexed to a nozzle body DUO) and three spray volumes (100, 150 and 200 dm3 ha-1), whose application was for the control of the Asian soybean rust. An area of 288 m 2 was used, with a randomized blocks design in a factorial 2×3 with 4 repetitions, total of 24 experimental parcels of 12 m2. For the spraying with hydraulical nozzles a costal spray of constant pressure kept by C02 compressed with bar of 2 m was used. The analysis of the covering percentage was carried through by means of the use of hidro-sensible paper, that was placed in three position of the plant what it represents, in height, the third superior, average and inferior of the canopy. For both the third no interaction between the evaluated factors, was found and meither difference statistics between the spraying tips and the volumes. In absolute values the twin flat fan nozzle DUO presented minimum difference of covering in relation to the hollow cone nozzle, and for the spray volume of 200 dm3 ha -1 presented greater covering percentage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence of minimum lubrication, optimized and conventional cooling at different flows and application rates of cutting fluids on the quality of hardened-steel pieces produced by external cylindrical plunge grinding with super-abrasive grinding wheels with low CBN concentrations was verified. The analysis of the quality of the pieces was performed through the assessment of the behavior of the specific energy of the grinding, roughness, roundness deviation, and the generated residual stress. By analyzing of the application ways and of the several flows and application rates of the cutting fluid, one could encounter lubrication/cooling conditions that enable the reduction in cutting fluid volume, reduction in grinding time without compromising the dimensional parameters (superficial finishing, surface integrity). Regarding the different applications of cutting fluids, it could be noted the optimized application for higher velocities has presented the best performance, demonstrating the effectiveness of the new concept of nozzle utilized.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Currently, one of factors that cause the production cost increase of soybean crop is the pesticide application. The most important disease in soybean crop is Asian rust, caused by Phakopsora pachyrhizi Sydon & P. Sydon fungus, which can cause significant loss of the production. Therefore, this work aimed at evaluation of different spraying techniques on the spray deposits and some parameters of soybean crop: grain size, weight of 1 000 seeds and the crop productivity. Two experiments were carried out in the experimental area of FCA/UNESP (Faculdade de Ciencias Agronomicas/Universidade Estadual Paulista Julio de Mesquita Filho) - Botucatu, S P, Brazil, in soybean crop, Conquista variety, in the 2007/2008 season. In the first experiment, three air levels (0, 9 and 29 km/h of the air speed generated by fan) with flat fan nozzle XR 8002 with a spray volume of 130 l/ha were compared with a rotating nozzle - using low volume oily - LVO at 40 l/ha of spray volume. The second experiment was carried out under the same conditions as the previous experiment, including a control treatment (untreated plants). The disease severity was evaluated using a diagrammatic scale with a visual evaluation of the disease on 15 leaves of each plot. The grades varied between 0.6 and 78.5% of the disease severity. The use of air assistance when compared with the rotating system nozzle did not show significant differences for spray deposits on adaxial and abaxial surface of the leaves in bottom part of the plant. The air assistance with maximum air speed (29 km/h) increased the productivity with respect of the other treatments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The high demand of pesticides in the production systems makes the application technology one of the main alternatives to optimize the products efficiency. In this context, the study aimed to evaluate the effects of spray nozzles and spray volumes on spraying deposits, armyworm control and crop corn performance in narrow row sowing system. The experiment was carried out at experimental area of Sao Paulo State University, Campus of Botucatu/SP, Brazil, during the 2009/2010 agricultural season, in randomized blocks with factorial scheme (2x2+1) and four replications. It was tested two flat fan spray nozzles (with and without air induction) combined with two spray volumes (100 and 200 L ha-1) plus a control treatment. There was no influence of spray nozzles (without air induction) in the spray deposits levels on plants. However, the flat fan nozzle with air induction was more effective on fall armyworm, with 100% of control against 47.84% from other at 15 days after spraying. The increase in the spray volume promoted high spray deposits (415.4 and 388.6 μL g-1 dry mass for flat fan nozzle with and without air induction, respectively at V10 growth stage) and consequently, the highest spray volume (200 L-1) was more efficient in the fall armyworm suppression, with 100% of control. All the technologies tested showed lower plant injury from fall armyworm. The insecticide sprayed with different technologies did not affect the parameters of plant height and leaf area index. The corn productivity was directly related with control efficiency of fall armyworm. © 2012 Academic Journals Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Continuous strip metal matrix composite (MMC) casting of 0.3 mm diameter hard-drawn stainless steel (316L) wire in a quasi-eutectic SnPb (64Sn36Pb) matrix was performed by a two-roll melt drag processing (TRMDping) method, with the wire being dragged through a semisolid puddle with a fibre contact time of approximately 0.2 s. A slag weir placed at the nozzle contained two wire guide holes: one located near the upper roll, and the other located between the rolls. A successful continuous composite strip casting with good fibre alignment was achieved by inserting and embedding the wire into the matrix using the guide hole between the rolls. Degeneration of eutectic/dendrite structures led to the formation of globular structures. The occurrence and formation mechanisms of cracks, de-lamination and voids in the matrix were discussed. TRMDping is economically viable and has significant benefits over other MMC fabrication methods. © (2013) Trans Tech Publications, Switzerland.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The drift is intimately linked to inappropriate use of pesticides and an important factor for reducing it, is the correct selection of spray nozzles and adjuvants. The objective of this work was to evaluate the drift potential in wind tunnel with different spray nozzles and different concentrations of adjuvants. The experiment was composed by six spray solutions (vegetable oil (in three concentrations), mineral oil, surfactant and reducing drift), which were applied with two nozzles, one pre-orifice flat fan (DG 8003 VS) and other with air induction (AI 8003 VS), totaling 12 treatments, with three repetitions. The equipment used was a wind tunnel, where the drift collections were made at different points. The treatments averages were compared using Confidence Interval at 5% probability. The analysis of the percentage of drift showed that the treatments had different behaviors. The nonylphenol ethoxylate adjuvant presented the highest drift when applied with the nozzle of pre-orifice and the lowest drift when applied with the air induction. The behavior of these nozzles when the oil-based adjuvant was used showed apposite results to those obtained for the surfactant. For the DG nozzles the lowest percentage of drift, at all analyzed distances, was observed to the treatment with vegetable oil (1.0%) and with the AI nozzles the lower drift was found for the treatment with nonylphenol ethoxylate (0.0625%), for the four distances in the collection. The result showed that both the spray nozzles and adjuvants alter directly the drift potential. There was no proportionately between the concentration of the oil-based adjuvant and the drift percentage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, different methods of cutting fluid application are used in turning of a difficult-to-machine steel (SAE EV-8). Initially, a semisynthetic cutting fluid was applied using a conventional method (i.e. overhead flood cooling), minimum quantity of cutting fluid, and pulverization. A lubricant of vegetable oil (minimum quantity of lubricant) was also applied using the minimum quantity method. Thereafter, a cutting fluid jet under high pressure (3.0 MPa) was singly applied in the following regions: chip-tool interface, top surface of the chip (between workpiece and chip) and tool-workpiece contact. Moreover, two other methods were used: an interflow between conventional application and chip-tool interface jet (combined method) and, finally, three jets simultaneously applied. In order to carry out these tests, it was necessary to set up a high-pressure system using a piston pump for generating a cutting fluid jet, a venturi for fluid application (minimum quantity of cutting fluid and minimum quantity of lubricant) and a nozzle for cutting fluid pulverization. The output variables analyzed included tool life, surface roughness, cutting tool temperature, cutting force, chip form, chip compression rate and machined specimen microstructure. Among the results, it can be observed that the tool life increases and the cutting force decreases with the application of cutting fluid jet, mainly when it is directed to the chip-tool interface. Excluding the methods involving jet fluid, the conventional method seems to be more efficient than other methods of low pressure, such as minimum quantity of volume and pulverization, when considering just the cutting tool wear. © 2013 IMechE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Different methods of cutting fluid application are used on turning of a difficult-tomachine steel (SAE EV-8). A semi-synthetic cutting fluid was applied using a conventional method, minimum quantity of cutting fluid (MQCF), and pulverization. By the minimum quantity method was also applied a lubricant of vegetable oil (MQL). Thereafter, a cutting fluid jet under high pressure (3.0 MPa) was singly applied in the following regions: chip-tool interface; top surface of the chip; and tool-workpiece contact. Two other methods were used: an interflow between conventional application and chip-tool interface jet and, finally, three jets simultaneously applied. In order to carry out these tests, it was necessary to set up a high pressure system using a piston pump for generating a cutting fluid jet, a Venturi for fluid application (MQCF and MQL), and a nozzle for cutting fluid pulverization. The output variables analyzed included tool life, surface roughness, cutting tool temperature, cutting force, chip form, chip compression rate and machined specimen microstructure. It can be observed that the tool life increases and the cutting force decreases with the application of cutting fluid jet, mainly when it is directed to the chip-tool interface. Excluding the methods involving jet fluid, the conventional method seems to be more efficient than other methods of low pressure. © (2013) Trans Tech Publications, Switzerland.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this study was to evaluate different strategies for the application of entomopathogenic nematodes (EPN). Three different models of spray nozzles with air induction (AI 11003, TTI 11003 and AD-IA 11004), three spray pressures (207, 413 and 720 kPa), four different additives for tank mixtures (cane molasses, mineral oil, vegetable oil and glycerin) and the influence of tank mixture stirring time were all evaluated for their effect on EPN (Steinernema feltiae) viability and pathogenicity. The different nozzles, at pressures of up to 620 kPa, were found to be compatible with S. feltiae. Vegetable oil, mineral oil and molasses were found to be compatible adjuvants for S. feltiae, and stirring in a motorized backpack sprayer for 30 minutes did not impact the viability or pathogenicity of this nematode. Appropriate techniques for the application of nematodes with backpack sprayers are discussed. © 2013 Moreira et al.