78 resultados para New oil regulatory mark


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Forestomach fermentation in Australian marsupials such as wallabies and kangaroos, though analogous to rumen fermentation, results in lower methane emissions. Insights into hydrogenotrophy in these systems could help in devising strategies to reduce ruminal methanogenesis. Reductive acetogenesis may be a significant hydrogen sink in these systems and previous molecular analyses have revealed a novel diversity of putative acetogens in the tammar wallaby forestomach.Results: Methanogen-inhibited enrichment cultures prepared from tammar wallaby forestomach contents consumed hydrogen and produced primarily acetate. Functional gene (formyltetrahydrofolate synthetase and acetyl-CoA synthase) analyses revealed a restricted diversity of Clostridiales species as the putative acetogens in the cultures. A new acetogen (growth on H-2/CO2 with acetate as primary end product) designated isolate TWA4, was obtained from the cultures. Isolate TWA4 classified within the Lachnospiraceae and demonstrated > 97% rrs identity to previously isolated kangaroo acetogens. Isolate TWA4 was a potent hydrogenotroph and demonstrated excellent mixotrophic growth (concomitant consumption of hydrogen during heterotrophic growth) with glycerol. Mixotrophic growth of isolate TWA4 on glycerol resulted in increased cell densities and acetate production compared to autotrophic growth. Co-cultures with an autotrophic methanogen Methanobrevibacter smithii revealed that isolate TWA4 performed reductive acetogenesis under high hydrogen concentration (> 5 mM), but not at low concentrations. Under heterotrophic growth conditions, isolate TWA4 did not significantly stimulate methanogenesis in a co-culture with M. smithii contrary to the expectation for organisms growing fermentatively.Conclusions: The unique properties of tammar wallaby acetogens might be contributing factors to reduced methanogen numbers and methane emissions from tammar wallaby forestomach fermentation, compared to ruminal fermentation. The macropod forestomach may be a useful source of acetogens for future strategies to reduce methane emissions from ruminants, particularly if these strategies also include some level of methane suppression and/or acetogen stimulation, for example by harnessing mixotrophic growth capabilities

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The state of insulating oils used in transformers is determined through the accomplishment of physical-chemical tests, which determine the state of the oil, as well as the chromatography test, which determines possible faults in the equipment. This article concentrate on determining, from a new methodology, a relationship among the variation of the indices obtained from the physical-chemical tests with those indices supplied by the chromatography tests.The determination of the relationship among the tests is accomplished through the application of neural networks. From the data obtained by physical-chemical tests, the network is capable to determine the relationship among the concentration of the main gases present in a certain sample, which were detected by the chromatography tests.More specifically, the proposed approach uses neural networks of perceptron type constituted of multiple layers. After the process of network training, it is possible to determine the existent relationship between the physical-chemical tests and the amount of gases present in the insulating oil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The current concern with the environment promotes the development of new technologies for production with use of alternative materials, from renewable resources, and changes in production processes, having as main objective the reduction of environmental impact. One of the alternatives for cleaner production is the use of castor oil derivatives instead of non-renewable sources, such as adhesives based on PVA (polyvinyl acetate), applied in the manufacturing process of glued laminated bamboo. Based on the versatility of the bamboo laminate and the castor oil, and from the perspective of sustainability, this study aims to contribute to the application of new materials and processes, used in the manufacturing industry, by proposing the use of the polyurethane adhesive based on castor oil for glued laminated bamboo manufacturing, which can later be used in the manufacture of several products. To verify the applicability of the polyurethane adhesive based on castor oil in the glued laminated bamboo manufacture, mechanical tests of traction and shearing of the glue sheet were performed in specimens of the said material, and the results were compared with the Cascorez 2590 and Waterbond adhesives. The results showed that the polyurethane adhesive based on castor oil, in the traction test, has superior performance than the Waterbond adhesive and slightly below than the Cascorez 2590 adhesive, but in the shear test, the polyurethane adhesive based on castor oil presented a slightly inferior performance than the other two adhesives used in the comparison.