102 resultados para New materials
Resumo:
The increasing demand for devices for solid state applications in many technological areas has resulted in a high demand for new materials. Among these material have the advantage of being manufactured with different chemical compositions, and may have physical properties equal to or higher than the corresponding crystalline material. The aim of this paper was to produce borate glass system 50B2O3 – 15CuO – 20Li2O – 15X (X = Na2O, K2O, RbCl e Cs2O) to analyze the influence of the atomic radius of alkali in the physical properties of this glass system. The glasses were synthesized by the process of melting and molding. The characteristic temperatures were determined by the technique of scanning calorimetry (DSC). The non-crystalline was determined by x-ray diffraction. In order to determine the molar volume a density measurement by using the Archimedes method was used. The structural characterization was carried out using the technique of infrared spectroscopy
Resumo:
The research involving new materials has always been considered as a differential in the development of a technology company. This occurred naturally since ancient times, often motivated by reasons of a certain age, where the most common material used was also the name of your time and may be cited as an example the Bronze Age, and later was the Iron. Currently, the use of firearms are they used in resolving conflicts between countries, or a more equivocal, as an instrument of social banditry make innovations in the area of shielding welcome, whether for personal use, in the form of vests or vehicle such as cars, tanks and even aircraft. In this context, is a Silicon Carbide Ceramic, with low density and high hardness. Thus, the aim of this study is the evaluation and comparison of these materials, seeking to improve their properties by means of additives such as boron and silicon metal and amorphous YAG. For this work, the specimens were pre-shaped by means of uniaxial later to be referred for isostatic pressing and sintering. The maximum percentage for each additive was 5%, except for the YAG whose percentage was 8.2% (mass percentage). All compositions were subjected to the same tests (x-ray diffraction, apparent density, optical microscopy, Vickers hardness, scanning electron Microscopita), so that one could draw a comparison between the materials under study, samples that showed better mechanical properties and micro structural, related here by hardness testing and microscopy (optical and SEM) were the silicon carbide doped with YAG and alumina samples, demonstrating the potential of these materials for ballistic protection. Other compositions have high porosity, which is highly undesirable, since in order to harmful influences on the mechanical properties discussed below
Resumo:
Technology always advances and thus the device miniaturization and improved performance, besides multifunctionality, they become extremely necessary. A wave of research on the area tends to grow in number and importance in today's market, it is necessary to search for new materials, new applicability of the existing ones and new processes for increasingly cheaper costs. Dielectric materials are considered a key element in this sector being the main electrical properties its high dielectric constant and low dielectric loss. The Polymeric Precursor Method appears as a good alternative because is a low cost, simple process with controlled stoichiometry. In this method, two steps were performed. In a first step, the precursor solution was decomposed into powders and in a second step the precursor solution was converted in thin films. In this work, was used the polymeric precursor methods to get thin films where they were heat treated and characterized by XRD, SEM and AFM. We have obtained Bi3NbO7 thin films with good homogeneity and uniform distribution of grains were noted. We observed that the best condition to obtain the tetragonal phase is annealing the film at high temperatures for a longer soaking time and with excess of bismuth. Several oxides electrodes were evaluated aiming to obtain textured dielectric thin films
Resumo:
Pós-graduação em Matemática em Rede Nacional - IBILCE
Resumo:
The increasing demand for electro-electronic devices, with high performance and multi-functional and the rapid advances of the nanotechnology require the development of new methods and techniques for the production and characterization of nanostructure materials and phenomenological models to describe/to predict some of its properties. The demand for multifunctionality requires, at least, new materials, that can integrate ferroelectric and magnetic properties of high technological interest. Inside of this context, multiferroics material can be considered suitable to integrate two or more physical properties of high technological interest. It can also provides new challenges in the processes of synthesis of new materials, and development of new devices with controlling and simulation of its physical properties and modeling. For this Calcium (Ca)-doped bismuth ferrite (BiFeO3) thin films prepared by using the polymeric precursor method (PPM) were characterized by X-ray diffraction (XRD), field emission gun scanning electron microscopy (FEG-SEM), transmission electron microscopy (TEM), polarization and piezoelectric measurements.In order to study the behavior and determine which are the most important parameters to achieve the optimal property to be applied to a multiferroic materials
Resumo:
The need for development of new materials is a natural process in the companies’ technological point of view, seeking improvements in materials and processes. Specifically, among the materials, ceramic exhibit valuable properties, especially the covalent ceramics which have excellent properties for applications which requires the abrasion resistance, hardness, high temperatures, resistence, etc. being a material that has applications in several areas. Most studies are related to improvement of properties, specially fracture toughness that allows the expansion of its application. Among the most promising ceramic materials are silicon nitride (Si3N4) which has excellent properties. The goal of this work was the development and caracterization of Si3N4-based ceramics, doped with yttrium oxide (Y2O3), rar earth concentrate (CTR2O3) and cerium oxide (CeO2) in the same proportion for the evaluation of properties. The powders' mixtures were homogenized, dried and compressed under pressure uniaxial and isostatic. Sintering was carried out in 1850 ⁰C under pressure of 0,1MPa N2 for 1 h with a heating rate of 25 ⁰C / min and cooling in the furnace inertia. The characterizations were performed using Archimedes principle to relative density, weight loss by measuring before and after sintering, phase analysis by X-ray diffraction, microstructure by scanning electron microscope (SEM), hardness and fracture toughness by the method Vickers indentation. The results obtained showed relative density of 97-98%, Vickers hardness 17 to 19 GPa, fracture toughness 5.6 to 6.8 MPa.m1/2, with phases varying from α-SiAlON and β-Si3N4 depending the types of additives used. The results are promising for tribological applications and can be defined according to the types of additives to be used
Resumo:
Coumarin is a natural active compound that can be found in many plants. The coumarins have many properties such as bronchodilator, anti-inflammatory, antioxidant, anticoagulant, antibiotics, immunomodulatory, antimicrobial and antiviral, thus, they are widely used in medical applications. More recently the coumarin derivatives have attracted the interest of many research groups in the field of new materials, for example the possibility of their use as sensitizers in dye-sensitized solar cells (DSSC) and lasers. The MCRs are defined as a process in which three or more reactants are combined in the same reaction pot, resulting in products with good structural complexity a single step, in addition to economy of atoms and selectivity and is a very important feature in modern synthetic methodology. In this work we investigated the use of niobium pentachloride as catalyst of the multicomponent reactions between phenolic derivatives, various aromatic aldehydes and β-diester derivatives in the synthesis of 4-aryl-3,4-dihydrocoumarin derivatives. The reactions were carried out at room temperature, under inert atmosphere (N2), using dichloromethane anhydrous (CH2 Cl2) as solvent, with a reaction time of most 120 hours. The products were isolated by column chromatography on silica gel and submitted to spectrometric and spectroscopic analysis. The results show that NbCl5 is an excellent agent for promoting the synthesis of 4-aryl-3,4-dihydrocoumarin derivatives through multicomponent reactions, obtaining yields varying from 45 to 95%
Resumo:
Pós-graduação em Química - IQ
Resumo:
Pós-graduação em Química - IQ
Clareamento interno em dentes despolpados como alternativa a procedimentos invasivos: relato de caso
Resumo:
The increasing interest of patients for a better aesthetic appearance of their smile, associated with the development of new materials and techniques, encouraged by media couverage of this concept of beauty, provided an important evolution of cosmetic dentistry. As the darkness of a single anterior tooth or a group of teeth, in most cases, impairs the appearance of the smile and there is growing appreciation of the less invasive procedures, the technique of tooth bleaching is an important option for aesthetic treatment. To have success in the bleaching treatment, it is important to have knowledge of the origin, nature and composition of the stain. Among the causes of color changes acquired post-eruptive, dental trauma, with or without pulp necrosis, is one of the most commonly encountered etiologies, characterized by a reddish-brown color. Current techniques of bleaching for teeth treated endodontically employ oxidative agent hydrogen peroxide. The objective of this paper is to describe the immediate technique of bleaching non-vital tooth by presenting a clinical case.
Resumo:
Pós-graduação em Química - IQ
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Pós-graduação em Engenharia Mecânica - FEB
Resumo:
The current concern with the environment promotes the development of new technologies for production with use of alternative materials, from renewable resources, and changes in production processes, having as main objective the reduction of environmental impact. One of the alternatives for cleaner production is the use of castor oil derivatives instead of non-renewable sources, such as adhesives based on PVA (polyvinyl acetate), applied in the manufacturing process of glued laminated bamboo. Based on the versatility of the bamboo laminate and the castor oil, and from the perspective of sustainability, this study aims to contribute to the application of new materials and processes, used in the manufacturing industry, by proposing the use of the polyurethane adhesive based on castor oil for glued laminated bamboo manufacturing, which can later be used in the manufacture of several products. To verify the applicability of the polyurethane adhesive based on castor oil in the glued laminated bamboo manufacture, mechanical tests of traction and shearing of the glue sheet were performed in specimens of the said material, and the results were compared with the Cascorez 2590 and Waterbond adhesives. The results showed that the polyurethane adhesive based on castor oil, in the traction test, has superior performance than the Waterbond adhesive and slightly below than the Cascorez 2590 adhesive, but in the shear test, the polyurethane adhesive based on castor oil presented a slightly inferior performance than the other two adhesives used in the comparison.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)