79 resultados para Negro de fumo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article we present the plants used for the treatment of malaria and associated symptoms in Santa Isabel do Rio Negro in the Brazilian Amazon. The region has important biological and cultural diversities including more than twenty indigenous ethnic groups and a strong history in traditional medicine. The aims of this study are to survey information in the Baniwa, Baré, Desana, Piratapuia, Tariana, Tukano, Tuyuca, Yanomami ethnic communities and among caboclos (mixed-ethnicity) on: a) plant species used for the treatment of malaria and associated symptoms; b) dosage forms and c) distribution of these anti-malarial plants in the Amazon. Information was obtained through classical ethnobotanical and ethnopharmacological methods from interviews with 146 informants in Santa Isabel municipality on the upper Negro River, Brazil. Fifty-five mainly native neotropical plant species from 34 families were in use. The detailed uses of these plants were documented. The result was 187 records (64.4%) of plants for the specific treatment of malaria, 51 records (17.5%) of plants used in the treatment of liver problems and 28 records (9.6%) of plants used in the control of fevers associated with malaria. Other uses described were blood fortification ('dar sangue'), headache and prophylaxis. Most of the therapeutic preparations were decoctions and infusions based on stem bark, root bark and leaves. These were administered by mouth. In some cases, remedies were prepared with up to three different plant species. Also, plants were used together with other ingredients such as insects, mammals, gunpowder and milk. This is the first study on the anti-malarial plants from this region of the Amazon. Aspidosperma spp. and Ampelozizyphus amazonicus Ducke were the most cited species in the communities surveyed. These species have experimental proof supporting their anti-malarial efficacy. The dosage of the therapeutic preparations depends on the kind of plant, quantity of plant material available, the patient's age (children and adults) and the local expert. The treatment time varies from a single dose to up to several weeks. Most anti-malarial plants are domesticated or grow spontaneously. They are grown in home gardens, open areas near the communities, clearings and secondary forests, and wild species grow in areas of seasonally flooded wetlands and terra firme (solid ground) forest, in some cases in locations that are hard to access. Traditional knowledge of plants was found to be falling into disuse presumably as a consequence of the local official health services that treat malaria in the communities using commercial drugs. Despite this, some species are used in the prevention of this disease and also in the recovery after using conventional anti-malarial drugs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Studies on Chagas disease deal with the perspective of its occurrence in the Amazon region, which is directly correlated to the population growth and the spread of the bug biotope. The state of Rondônia has an immense source of vectors (Triatomine) and reservoirs of Trypanosoma cruzi. Environmental changes brought forth by the deforestation in the region may cause vector behavior changes and bring these vectors to a closer contact with humans, increasing the probability of vector infection. Methods: This study was carried out to check the occurrence of Chagas disease in the municipality of Monte Negro, Rondônia, Brazil, based on a random sampling of the farms and people wherein blood collection from the population and capturing triatomines were done. The blood samples were submitted to serologic tests to detect antibodies of the IgG class against T. cruzi. The triatomines that were collected had their digestive tract checked for the presence of trypanosomatidae with morphology resembling that of the T. cruzi. Results: The population examined was mostly from other states. From the 322 bugs examined on the microscope, 50% showed parasites with morphology compatible with T. cruzi. From the serology of 344 random samples of human blood, 1.2% was found positive, 6% showed inconclusive results, and 92.8% were negative. Conclusions: Monte Negro shows low prevalence of human infection by T. cruzi and none active vector transmission; however, preventive and surveying measures, which are not performed until now, shall be taken due to the abundance of vectors infected by trypanosomatidae.