87 resultados para NEURAL SYSTEMS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Em geral, estruturas espaciais e manipuladores robóticos leves têm uma característica similar e inerente que é a flexibilidade. Esta característica torna a dinâmica do sistema muito mais complexa e com maiores dificuldades para a análise de estabilidade e controle. Então, braços robóticos bastantes leves, com velocidade elevada e potencia limitada devem considerar o controle de vibração causada pela flexibilidade. Por este motivo, uma estratégia de controle é desejada não somente para o controle do modo rígido mas também que seja capaz de controlar os modos de vibração do braço robótico flexível. Também, redes neurais artificiais (RNA) são identificadas como uma subespecialidade de inteligência artificial. Constituem atualmente uma teoria para o estudo de fenômenos complexos e representam uma nova ferramenta na tecnologia de processamento de informação, por possuírem características como processamento paralelo, capacidade de aprendizagem, mapeamento não-linear e capacidade de generalização. Assim, neste estudo utilizam-se RNA na identificação e controle do braço robótico com elos flexíveis. Esta tese apresenta a modelagem dinâmica de braços robóticos com elos flexíveis, 1D no plano horizontal e 2D no plano vertical com ação da gravidade, respectivamente. Modelos dinâmicos reduzidos são obtidos pelo formalismo de Newton-Euler, e utiliza-se o método dos elementos finitos (MEF) na discretização dos deslocamentos elásticos baseado na teoria elementar da viga. Além disso, duas estratégias de controle têm sido desenvolvidas com a finalidade de eliminar as vibrações devido à flexibilidade do braço robótico com elos flexíveis. Primeiro, utilizase um controlador neural feedforward (NFF) na obtenção da dinâmica inversa do braço robótico flexível e o calculo do torque da junta. E segundo, para obter precisão no posicionamento... (Resumo completo, clicar acesso eletrônico abaixo)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article deals with classification problems involving unequal probabilities in each class and discusses metrics to systems that use multilayer perceptrons neural networks (MLP) for the task of classifying new patterns. In addition we propose three new pruning methods that were compared to other seven existing methods in the literature for MLP networks. All pruning algorithms presented in this paper have been modified by the authors to do pruning of neurons, in order to produce fully connected MLP networks but being small in its intermediary layer. Experiments were carried out involving the E. coli unbalanced classification problem and ten pruning methods. The proposed methods had obtained good results, actually, better results than another pruning methods previously defined at the MLP neural network area. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Evolutionary algorithms have been widely used for Artificial Neural Networks (ANN) training, being the idea to update the neurons' weights using social dynamics of living organisms in order to decrease the classification error. In this paper, we have introduced Social-Spider Optimization to improve the training phase of ANN with Multilayer perceptrons, and we validated the proposed approach in the context of Parkinson's Disease recognition. The experimental section has been carried out against with five other well-known meta-heuristics techniques, and it has shown SSO can be a suitable approach for ANN-MLP training step.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Internet access by wireless networks has grown considerably in recent years. However, these networks are vulnerable to security problems, especially those related to denial of service attacks. Intrusion Detection Systems(IDS)are widely used to improve network security, but comparison among the several existing approaches is not a trivial task. This paper proposes building a datasetfor evaluating IDS in wireless environments. The data were captured in a real, operating network. We conducted tests using traditional IDS and achieved great results, which showed the effectiveness of our proposed approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The state of insulating oils used in transformers is determined through the accomplishment of physical-chemical tests, which determine the state of the oil, as well as the chromatography test, which determines possible faults in the equipment. This article concentrate on determining, from a new methodology, a relationship among the variation of the indices obtained from the physical-chemical tests with those indices supplied by the chromatography tests.The determination of the relationship among the tests is accomplished through the application of neural networks. From the data obtained by physical-chemical tests, the network is capable to determine the relationship among the concentration of the main gases present in a certain sample, which were detected by the chromatography tests.More specifically, the proposed approach uses neural networks of perceptron type constituted of multiple layers. After the process of network training, it is possible to determine the existent relationship between the physical-chemical tests and the amount of gases present in the insulating oil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the search for productivity increase, industry has invested on the development of intelligent, flexible and self-adjusting method, capable of controlling processes through the assistance of autonomous systems, independently whether they are hardware or software. Notwithstanding, simulating conventional computational techniques is rather challenging, regarding the complexity and non-linearity of the production systems. Compared to traditional models, the approach with Artificial Neural Networks (ANN) performs well as noise suppression and treatment of non-linear data. Therefore, the challenges in the wood industry justify the use of ANN as a tool for process improvement and, consequently, add value to the final product. Furthermore, Artificial Intelligence techniques such as Neuro-Fuzzy Networks (NFNs) have proven effective, since NFNs combine the ability to learn from previous examples and generalize the acquired information from the ANNs with the capacity of Fuzzy Logic to transform linguistic variables in rules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Cientifico e Tecnológico (CNPq)