90 resultados para Multi-objective optimization techniques
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This paper presents a mixed-integer convex-optimization-based approach for optimum investment reactive power sources in transmission systems. Unlike some convex-optimization techniques for the reactive power planning solution, in the proposed approach the taps settings of under-load tap-changing of transformers are modeled as a mixed-integer linear set equations. Are also considered the continuous and discrete variables for the existing and new capacitive and reactive power sources. The problem is solved for three significant demand scenarios (low demand, average demand and peak demand). Numerical results are presented for the CIGRE-32 electric power system.
Resumo:
In this work, nanometric displacement amplitudes of a Piezoelectric Flextensional Actuator (PFA) designed using the topology optimization technique and operating in its linear range are measured by using a homodyne Michelson interferometer. A new improved version of the J1...J4 method for optical phase measurements, named J1...J5 method, is presented, which is of easier implementation than the original one. This is a passive phase detection scheme, unaffected by signal fading, source instabilities and changes in visibility. Experimental results using this improvement were compared with those obtained by using the J1... J4, J1...J6(pos) and J1...J 6(neg) methods, concluding that the dynamic range is increased while maintaining the sensitivity. Analysis based on the 1/f voltage noise and random fading show the new method is more stable to phase drift than all those methods. © 2012 IEEE.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Goal Programming (GP) is an important analytical approach devised to solve many realworld problems. The first GP model is known as Weighted Goal Programming (WGP). However, Multi-Choice Aspirations Level (MCAL) problems cannot be solved by current GP techniques. In this paper, we propose a Multi-Choice Mixed Integer Goal Programming model (MCMI-GP) for the aggregate production planning of a Brazilian sugar and ethanol milling company. The MC-MIGP model was based on traditional selection and process methods for the design of lots, representing the production system of sugar, alcohol, molasses and derivatives. The research covers decisions on the agricultural and cutting stages, sugarcane loading and transportation by suppliers and, especially, energy cogeneration decisions; that is, the choice of production process, including storage stages and distribution. The MCMIGP allows decision-makers to set multiple aspiration levels for their problems in which the more/higher, the better and the less/lower, the better in the aspiration levels are addressed. An application of the proposed model for real problems in a Brazilian sugar and ethanol mill was conducted; producing interesting results that are herein reported and commented upon. Also, it was made a comparison between MCMI GP and WGP models using these real cases. © 2013 Elsevier Inc.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The study of robust design methodologies and techniques has become a new topical area in design optimizations in nearly all engineering and applied science disciplines in the last 10 years due to inevitable and unavoidable imprecision or uncertainty which is existed in real word design problems. To develop a fast optimizer for robust designs, a methodology based on polynomial chaos and tabu search algorithm is proposed. In the methodology, the polynomial chaos is employed as a stochastic response surface model of the objective function to efficiently evaluate the robust performance parameter while a mechanism to assign expected fitness only to promising solutions is introduced in tabu search algorithm to minimize the requirement for determining robust metrics of intermediate solutions. The proposed methodology is applied to the robust design of a practical inverse problem with satisfactory results.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aggregation theory of mathematical programming is used to study decentralization in convex programming models. A two-level organization is considered and a aggregation-disaggregation scheme is applied to such a divisionally organized enterprise. In contrast to the known aggregation techniques, where the decision variables/production planes are aggregated, it is proposed to aggregate resources allocated by the central planning department among the divisions. This approach results in a decomposition procedure, in which the central unit has no optimization problem to solve and should only average local information provided by the divisions.
Resumo:
Linear Matrix Inequalities (LMIs) is a powerful too] that has been used in many areas ranging from control engineering to system identification and structural design. There are many factors that make LMI appealing. One is the fact that a lot of design specifications and constrains can be formulated as LMIs [1]. Once formulated in terms of LMIs a problem can be solved efficiently by convex optimization algorithms. The basic idea of the LMI method is to formulate a given problem as an optimization problem with linear objective function and linear matrix inequalities constrains. An intelligent structure involves distributed sensors and actuators and a control law to apply localized actions, in order to minimize or reduce the response at selected conditions. The objective of this work is to implement techniques of control based on LMIs applied to smart structures.
Resumo:
This paper tackles a Nurse Scheduling Problem which consists of generating work schedules for a set of nurses while considering their shift preferences and other requirements. The objective is to maximize the satisfaction of nurses' preferences and minimize the violation of soft constraints. This paper presents a new deterministic heuristic algorithm, called MAPA (multi-assignment problem-based algorithm), which is based on successive resolutions of the assignment problem. The algorithm has two phases: a constructive phase and an improvement phase. The constructive phase builds a full schedule by solving successive assignment problems, one for each day in the planning period. The improvement phase uses a couple of procedures that re-solve assignment problems to produce a better schedule. Given the deterministic nature of this algorithm, the same schedule is obtained each time that the algorithm is applied to the same problem instance. The performance of MAPA is benchmarked against published results for almost 250,000 instances from the NSPLib dataset. In most cases, particularly on large instances of the problem, the results produced by MAPA are better when compared to best-known solutions from the literature. The experiments reported here also show that the MAPA algorithm finds more feasible solutions compared with other algorithms in the literature, which suggest that this proposed approach is effective and robust. © 2013 Springer Science+Business Media New York.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The objective of the present study was to optimize a radiographic technique for hand examinations using a computed radiography (CR) system and demonstrate the potential for dose reductions compared with clinically established technique. An exposure index was generated from the optimized technique to guide operators when imaging hands. Homogeneous and anthropomorphic phantoms that simulated a patient's hand were imaged using a CR system at various tube voltages and current settings (40-55 kVp, 1.25-2.8 mAs), including those used in clinical routines (50 kVp, 2.0 mAs) to obtain an optimized chart. The homogeneous phantom was used to assess objective parameters that are associated with image quality, including the signal difference-to-noise ratio (SdNR), which is used to define a figure of merit (FOM) in the optimization process. The anthropomorphic phantom was used to subjectively evaluate image quality using Visual Grading Analysis (VGA) that was performed by three experienced radiologists. The technique that had the best VGA score and highest FOM was considered the gold standard (GS) in the present study. Image quality, dose and the exposure index that are currently used in the clinical routine for hand examinations in our institution were compared with the GS technique. The effective dose reduction was 67.0%. Good image quality was obtained for both techniques, although the exposure indices were 1.60 and 2.39 for the GS and clinical routine, respectively.