88 resultados para Micelas poliméricas


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents some results of MFI and OIT tests performed on HDPE geomembranes of 0,8 and 2,5 mm that were exposed to weathering effects and leachate after 30 months (2,5 years). The aim of this work is the evaluation of the oxidative degradation process by comparison of fresh and exposed samples results. The expositing and tests were performed according the following standards recommendations: ASTM D1435 (weathering), ASTM D5747 e D5322 (leachate), ASTM D1238 (MFI) e D3895 (OIT). The results shows, for instance, that the MFI values presented high increases on the HDPE (2.5 mm) showing that polymeric chain break occurred for both exposures and, therefore, oxidative degradation. Concerning the OIT values all the geomembranes presented very low values even in the fresh samples. This demonstrates that there wasn’t an antioxidant package appropriate for these membranes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work evaluated the effect of vinasse (residue from sugar cane) in high density polyethylene (HDPE) geomembranes having in mind that it is deposited at temperatures of 80-90˚C on the geomembrane in storage tanks. The objective was to evaluate the resistance of the geomembrane in contact with residue in a total period of 4 months. Physical and mechanical tests, and thermogravimetric analysis (TGA) were used to determine degradation of polymer membranes after chemical immersion. In general, the results obtained show that the vinasse affected the geomembranes significantly in some aspects, for instance, the thickness of the material presented a variation of 7.8%. The average values in both directions at yielding showed a significant loss of tensile strength (34.13%) and strain (23.48%) and an increase in the modulus of elasticity (9.63%). At the rupture the behavior presented the same trend: a loss of 32% for tensile strength and 24.4% for the deformation were observed. Tear strength presented small decrease (4.72%) and puncture resistance a increase of 7.9% after immersion of geomembranes. The TGA tests were not efficient to detect evidence of degradation in samples of geomembranes after exposures, but identified problems in the quality of the supplied material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Ciência dos Materiais - FEIS

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The benzoxaxine resin is a new class of thermoset phenolic resin, which is presenting, in the lasts decades, a great application in the aircraft industry due mainly to its excellent mechanical and thermal properties. This resin associates the mechanical properties of epoxy resin with the thermal and flame retardant properties of phenolic resin. In this context, they are considered polymers of high performance and they are excellent candidates to replace the current thermoset matrices used in the processing of high performance composites. Thus, in this study nanostructured composites Benzoxazine/CNT were produced at different concentrations of functionalized and non-functionalized CNT (0,1%; 0,5% and 1,0% w/w). The thermal stability of the benzoxazine resin and its nanostructured composites was studied using thermogravimetry (TGA) and degradation kinetic model Ozawa-Wall-Flynn (O-W-F). The thermal characterization also included differential scanning calorimetry (DSC) and dynamic-mechanical analysis, infrared spectroscopy with Fourier transform (FTIR) and scanning electron microscopy (SEM).The introduction of non-functionalized CNT at low concentrations resulted in nanostructured composites with better thermal properties in relation to the neat resin. For all cases, however, the dispersion of CNT in the matrix was ineffective