140 resultados para Loss and damage.
Resumo:
Thermal spray WC-based coatings are widely used in the aircraft industry mainly for their resistance to wear, reworking and rebuilding operations and repair of worn components on landing gear, hydraulic cylinders, actuators, propeller hub assemblies, gas turbine engines, and so on. The aircraft industry is also trying to use thermal spray technology to replace electroplating coatings such as hard chromium. In the present work, WC-Co coatings were built up on an AA 7050 aluminum alloy using high velocity oxygen fuel (HVOF) technology and a liquid nitrogen cooling prototype system. The influence of the spray parameters (standard conditions, W19S, increasing the oxygen flux, W19H, and also increasing the carrier gas flux, W19F) on corrosion, friction, and abrasive wear resistance were also studied. The coatings were characterized using optical (OM) and scanning electron (SEM) microscopy, and X-ray diffraction (XRD). The friction and abrasive wear resistance of the coatings were studied using Rubber Wheel and Ball on Disk tests. The electrochemical studies were conducted using open-circuit potential (E(oc)) measurements and electrochemical impedance spectroscopy (EIS). Differences among coated samples were mainly related to the variation of the thermal spray parameters used during the spray process. No significant differences were observed in the wear resistance for the coatings studied, and all of them showed a wear rate around 10 times lower than that of the aluminum alloy. The results of mass loss and wear rate were interpreted considering different mechanisms. Comparing the different spray parameters, the oxygen flux (higher flame temperature) produced the sample which showed the highest corrosion resistance in aerated and unstirred 3.5% NaCl solution. Aluminum ions were detected on the surface almost immediately after the immersion of samples W19S and W19F in chloride solution, showing that the electrolyte reached the substrate and galvanic corrosion probably occurred. For sample W19H, aluminum ions were not detected even after 120 min of immersion in NaCl solution. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A hiperbilirrubinemia é tóxica às vias auditivas e ao sistema nervoso central, deixando sequelas como surdez e encefalopatia. OBJETIVOS: avaliar a audição de neonatos portadores de hiperbilirrubinemia, utilizando-se a pesquisa das emissões otoacústicas evocadas transientes (EOAET) e dos potenciais evocados auditivos do tronco encefálico (PEATE). Estudo prospectivo. CASUÍSTICA E MÉTODOS: Constituíram-se dois grupos: GI (n-25), neonatos com hiperbilirrubinemia; GII (n-22), neonatos sem hiperbilirrubinemia e sem fatores de risco para surdez. Todos os neonatos tinham até 60 dias de vida e foram submetidos à EOAET e ao PEATE. RESULTADOS: 12 neonatos de GI e 10 de GII eram meninas e 13 de GI e 12 de GII eram meninos. As EOAET estavam presentes em todas as crianças, porém com amplitudes menores em GI, especialmente nas frequências de 2 e 3KHz (p < 0,05). No PEATE, observou-se discreto prolongamento de PV e de LI-V em GI. As alterações observadas nesses testes não se correlacionaram aos níveis séricos da bilirrubinemia. CONCLUSÕES: em neonatos portadores de hiperbilirrubinemia, menores amplitudes das EOAET e discreto prolongamento de PV e de LI-V foram constatados indicando comprometimento coclear e retrococlear das vias auditivas, salientando-se a importância da utilização e da interpretação minuciosa de ambos os testes nessas avaliações.
Resumo:
One of the most studied ceramic superconductors for application has been, undoubtedly, Bi2Sr2CaCu2O8+delta. Although being a multiphasic material, it has proved to have great advantages compared to other ceramic systems. Measurements of the elastic energy loss and modulus (anelastic spectroscopy) as a function of temperature call distinguish among different atomic jumps that occur inside the various phases or at different local ordering. In this paper, mechanical loss spectra of Bi2Sr2CaCu2O8+delta bar shaped samples, made by a conventional method, have been measured between 80 and 600 K, using a torsion pendulum operating in frequencies below 50 Hz, for samples annealed in vacuum up to 600 K. Possible relaxation mechanisms are proposed to explain the origin of the mechanical-loss peaks observed 300 and 500 K. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A recent and innovative method to include Ti into the columbite precursor has permitted to synthesize 0.9PMN-0.1PT powders with high homogeneity. The present work describes this methodology, named modified columbite method, showing that the reaction between MN(T)and PbO at 800 degrees C for 2 h results in perovskite single-phase. The crystal structure alterations in the columbite and perovskite phases obtained by this methodology and the effects of potassium doping were investigated by the Rietveld method. Changes in the powder morphology, density and weight loss during the sintering process were also studied. Conclusively, potassium does not affect significantly the perovskite amount, but reduces the particle and grain sizes. This dopant also changes the relaxor behavior of 0.9PMN-0.1 PT ceramic, reducing the dielectric loss and enhancing the diffuseness of the phase transition. (C) 2005 Published by Elsevier Ltd and Techna Gronp S.r.l.
Resumo:
Hookworms are hematophagous nematodes capable of growth, development and subsistence in living host systems such as humans and other mammals. Approximately one billion, or one in six, people worldwide are infected by hookworms causing gastrointestinal blood loss and iron deficiency anemia. The hematophagous hookworm Ancylostoma caninum produces a family of small, disulfide-linked protein anticoagulants (75-84 amino acid residues). One of these nematode anticoagulant proteins, NAP5, inhibits the amidolytic activity of factor Xa (fXa) with K-i = 43 pM, and is the most potent natural fXa inhibitor identified thus far. The crystal structure of NAP5 bound at the active site of gamma-carboxyglutamic acid domainless factor Xa (des-fXa) has been determined at 3.1 angstrom resolution, which indicates that Asp189 (fXa, S1 subsite) binds to Arg40 (NAP5, P1 site) in a mode similar to that of the BPTI/trypsin interaction. However, the hydroxyl group of Ser39 of NAP5 additionally forms a hydrogen bond (2.5 angstrom) with His57 NE2 of the catalytic triad, replacing the hydrogen bond of Ser195 OG to the latter in the native structure, resulting in an interaction that has not been observed before. Furthermore, the C-terminal extension of NAP5 surprisingly interacts with the fXa exosite of a symmetry-equivalent molecule forming a short intermolecular beta-strand as observed in the structure of the NAPc2/fXa complex. This indicates that NAP5 can bind to fXa at the active site, or the exosite, and to fX at the exosite. However, unlike NAPc2, NAP5 does not inhibit fVIIa of the fVIIa/TF complex. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The anelastic relaxation (elastic energy loss and Young modulus) of nearly stoichiometric La2CuO4+delta with LTO structure was measured. Extraordinarily intense effects are present below room temperature in the elastic dynamic susceptibility, indicating relaxational dynamics of a relevant fraction of the lattice. The involved degrees of freedom are identified as rotations of the CuO6 octahedra. Two distinct processes are found at frequencies around 1 kKz: one is observed around 150 K and is characterized by a mean activation energy of 2800 K; the second one occurs below 30 K and is governed by atomic tunnelling. Two explanations are proposed for the faster process: i) formation of fluctuating LTT domains on a scale of few atomic cells; ii) the LTO phase is a dynamical Jahn-Teller phase with all the octahedra tunneling between two LTT-like tilts. In both cases there would be important implications regarding the mechanisms giving rise to charge nanophase separation and strong electron-phonon coupling.
Resumo:
Background: Bacterial constituents, such as Gram-negative derived lipopolysaccharide (LPS), can initiate inflammatory bone loss through induction of host-derived inflammatory cytokines. The aim of this study was to establish a model of aggressive inflammatory alveolar bone loss in rats using LPS derived from the periodontal pathogen Actinobacillus actinomycetemcomitans.Methods: Eighteen female Sprague-Dawley rats were divided into LPS test (N = 12) and saline control (N = 6) groups. All artimals received injections to the palatal molar gingiva three times per week for 8 weeks. At 8 weeks, linear and volumetric alveolar bone loss was measured by micro-computed tomography (mu CT). The prevalence of inflammatory infiltrate, proinflammatory cytokines, and osteoclasts was assessed from hematoxylin and eosin, immunohistochemical, or tartrate-resistant acid phosphatase (TRAP)-stained sections. Statistical analysis was performed.Results: A. actinomycetemcomitans LPS induced severe bone loss over 8 weeks, whereas control groups were unchanged. Linear and volumetric analysis of maxillae by mu CT indicated significant loss of bone with LPS, administration. Histologic examination revealed increased inflammatory infiltrate, significantly increased immunostaining for interleukin IL-6 and -1 beta and tumor necrosis factor-alpha, and more TRAP-positive osteoclasts in the LPS group compared to controls.Conclusion: Oral injections of LPS derived from the periodontal pathogen A. actinomycetemcomitans can induce severe alveolar bone loss and proinflammatory cytokine production in rats by 8 weeks.
Resumo:
S. elegans (Eriocaulaceae) is known in Brazil as star flower and is used economically for ornamental purposes. The fact that there is no control over its collection, brings about great damage to its population. Thus the importance of phenologic data for the conservation of the species. This paper reports the marking of 60 individuals in three different phases of development and the collection of monthly data about their phenology. S. elegans is a perennial plant with a rhizomatous stem that characterizes its vegetative growth. The pubescent leaves present in plants can prevent heat loss and their pigments can raise the ultra-violet radiation absorption. The young leaves present in plants during the begining of the dry season use rhizome reserves. Hydric scarcity may be the main reason for the mortality of the species. Vegetative growth and sexual reproduction are very important for the population's survival.,The blooming period in S. elegans occurs from om February to July and the dispersal of seeds occurs from August to December.
Resumo:
Background: This study investigated the influence of the period after ovariectomy on femoral and mandibular bone mineral density (BMD) and on induced periodontal disease.Methods: One hundred and twenty-six female Holtzman rats were divided into nine groups: control, sham surgery (SHAM) with and without induction of periodontal disease for 51 and 150 days, and ovariectomy (OVX) with and without induction of periodontal disease for 51 and 150 days. Periodontal disease was induced by placing ligatures on the first lower molars during the last 30 days of each period. BMD was measured by dual-energy x-ray absorptiometry. Vertical bone loss was determined by measuring the distance from the alveolar bone crest to the cemento-enamel junction on the mesial side of the first lower molar.Results: Statistical analyses (Kruskal-Wallis test) revealed a significant difference between the OVX and SHAM groups' global and femoral proximal epiphysis BMD (P < 0.001) for 150 days and in the global evaluation for 51 days. For mandibular BMD, no difference was found between the groups of each period. Influence of the period on femoral BMD was found only for the SHAM groups, with lower BMD for the 51-day period compared to the 150-day period (P < 0.05). In the global evaluation of the mandible, a lower BMD was found after 51 days. The period was a contributing factor for the vertical bone loss, and it resulted in higher values for the 51-day period (P < 0.05).Conclusion: the period influenced the femoral BMD and the vertical bone loss in induced periodontal disease.
Resumo:
Bothropstoxin-I (BthTX-I), from B. jararacussu venom, is a phospholipase A(2) (PLA(2)) homologue devoid of enzymatic activity. Besides inducing severe myonecrosis, BthTX-I promotes paralysis of both directly and indirectly evoked contractions in isolated neuromuscular preparations. We applied an experimental paradigm in order to characterize the steps involved in the toxic effects of BthTX-I on mouse neuromuscular junction. Myotoxicity was assessed by microscopic analysis of extensor digitorum longus muscles; paralyzing activity was evaluated through the recording of isolated contractions indirectly evoked in phrenic-diaphragm preparations. After 90 min at 35 degreesC, BthTX-I induced complete and irreversible paralysis, and damaged 30.3 +/- 2.7% of muscle fibers. In contrast, no effect was observed when tissues were incubated with BthTX-I at 10degreesC for 60 min and subsequently washed with toxin-free solution and maintained at 35 degreesC. These results indicate that the binding of BthTX-I to the cellular tissue surface is very weak at low temperature and that an additional factor is necessary. However, when tissues were submitted to BthTX-I (10degreesC for 60 min), and the temperature was elevated to 35 degreesC, omitting the washing step, it was observed muscle paralysis and damage in 39.04 +/- 4.2% of muscle fibers. These results indicate that a temperature-dependent step is necessary for BthTX-I to promote both its myotoxic and paralyzing activities. (C) 2004 Elsevier B.V.. All rights reserved.
Resumo:
Jaú National Park is a large rain forest reserve that contains small populations of four caiman species. We sampled crocodilian populations during 30 surveys over a period of four years in five study areas. We found the mean abundance of caiman species to be very low (1.0 ± 0.5 caiman/km of shoreline), independent of habitat type (river, stream or lake) and season. While abundance was almost equal, the species' composition varied in different waterbody and study areas. We analysed the structure similarity of this assemblage. Lake and river habitats were the most similar habitats, and inhabited by at least two species, mainly Caiman crocodilus and Melanosuchus niger. However, those species can also inhabit streams. Streams were the most dissimilar habitats studied and also had two other species: Paleosuchus trigonalus and P. palpebrosus. The structure of these assemblage does not suggest a pattern of species associated and separated by habitat. Trends in species relationships had a negative correlation with species of similar size, C. crocodilus and P. trigonatus, and an apparent complete exclusion of M. niger and P. trigonatus. Microhabitat analysis suggests a slender habitat partitioning: P. trigonatus was absent from river and lake lgapo (flooded forest), but frequent in stream Igapó. This species was the most terrestrial and found in microhabitats similar to C crocodilus (shallow waters, slow current). Melanosuchus niger inhabits deep, fast moving waters in different study areas Despite inhabiting the same waterbodies in many surveys, M. niger and C. crocodilus did not share the same microhabitats. Paleosuchus palpebrosus was observed only in running waters and never in stagnant lake habitats. Cluster analysis revealed three survey groups: two constitute a mosaic in floodplains. (a) a cluster with both M. niger and C crocodilus, and another (b) with only C. crocodilus. A third cluster (c) included more species, and the presence of Paleosuchus species. There was no significant difference among wariness of caimans between disturbed and undisturbed localities. However, there was a clear trend to increase wariness during the course of consecutive surveys at four localities, suggesting that we, more than local inhabitants, had disturbed caimans. The factors that are limiting caiman populations can be independent of human exploitation. Currently in Amazonia, increased the pressure of hunting, habitat loss and habitat alteration, and there is no evidence of widespread recovery of caiman populations. In large reserves as Jaú without many disturbance, most caiman populations can be low density, suggesting that in blackwater environments their recovery from exploitation should be very slow.
Resumo:
Purpose: Tissue reactions to 4 different implant surfaces were evaluated in regard to the development and progression of ligature-induced peri-implantitis. Materials and Methods: In 6 male mongrel dogs, a total of 36 dental implants with different surfaces (9 titanium plasma-sprayed, 9 hydroxyapatite-coated, 9 acid-etched, and 9 commercially pure titanium) were placed 3 months after mandibular premolar extraction. After 3 months with optimal plaque control, abutment connection was performed. Forty-five days later, cotton ligatures were placed around the implants to induce peri-implantitis. At baseline and 20, 40, and 60 days after placement, the presence of plaque, peri-implant mucosal redness, bleeding on probing, probing depth, clinical attachment loss, mobility, vertical bone loss, and horizontal bone loss were assessed. Results: The results did not show significant differences among the surfaces for any parameter during the study (P > .05). All surfaces were equally susceptible to ligature-induced peri-implantitis over time (P < .001). Correlation analysis revealed a statistically significant relationship between width of keratinized tissue and vertical bone loss (r 2 = 0.81; P = .014) and between mobility and vertical bone loss (r 2 = 0.66; P = .04), both for the titanium plasma-sprayed surface. Discussion and Conclusions: The present data suggest that all surfaces were equally susceptible to experimental peri-implantitis after a 60-day period.
Resumo:
We present the first complete study of basic laboratory-measured physiological variables (metabolism, thermoregulation, evaporative water loss, and ventilation) for a South American marsupial, the gracile mouse opossum (Gracilinanus agilis). Body temperature (Tb) was thermolabile below thermoneutrality (Tb = 33.5°C), but a substantial gradient between Tb and ambient temperature (Ta) was sustained even at Ta = 12°C (Tb = 30.6°C). Basal metabolic rate of 1.00 mL O2 g-1 h-1 at Ta = 30°C conformed to the general allometric relationship for marsupials, as did wet thermal conductance (5.7 mL O2 g-1 h-1 °C-1). Respiratory rate, tidal volume, and minute volume at thermoneutrality matched metabolic demand such that O2 extraction was 12.4%, and ventilation increased in proportion to metabolic rate at low T a. Ventilatory accommodation of increased metabolic rate at low Ta was by an increase in respiratory rate rather than by tidal volume or O2 extraction. Evaporative water loss at the lower limit of thermoneutrality conformed to that of other marsupials. Relative water economy was negative at thermoneutrality but positive below Ta = 12°C. Interestingly, the Neotropical gracile mouse opossums have a more positive water economy at low Ta than an Australian arid-zone marsupial, perhaps reflecting seasonal variation in water availability for the mouse opossum. Torpor occurred at low Ta, with spontaneous arousal when . T b > 20°C. Torpor resulted in absolute energy and water savings but lower relative water economy. We found no evidence that gracile mouse opossums differ physiologically from other marsupials, despite their Neotropical distribution, sympatry with placental mammals, and long period of separation from Australian marsupials. © 2009 by The University of Chicago. All rights reserved.