185 resultados para Limits of Sets
Resumo:
The yeast Saccharomyces cerevisiae was immobilized in cubes of polyurethane foam and the ability of this immobilized material to separate Sb(III) and Sb(V) was investigated. A method based on sequential determination of total Sb (after on-line reduction of Sb(V) to Sb(III) with thiourea) and Sb(Ill) (after on-line solid-liquid phase extraction) by hydride generation inductively coupled plasma optical emission spectrometry is proposed. A flow system assembled with solenoid valves was used to manage all stages of the process. The effects of pH, sample loading and elution flow rates on solid-liquid phase extraction of Sb(III) were evaluated. Also, the parameters related to online pre-reduction (reaction coil and flow rates) were optimized. Detection limits of 0.8 and 0.15 mu g L-1 were obtained for total Sb and Sb (III), respectively. The proposed method was applied to the analysis of river water and effluent samples. The results obtained for the determination of total Sb were in agreement with expected values, including the river water Standard Reference Material 1640 certified by the National Institute of Standards and Technology (NIST). Recoveries of Sb(III) and Sb(V) in spiked samples were between 81 19 and I I I 15% when 120 s of sample loading were used. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A method has been developed for the direct simultaneous determination of Cd and Pb in white and red wine by electrothermal atomic absorption spectrometry (ET-AAS) using a transversely heated graphite tube atomizer (THGA) with longitudinal Zeeman-effect background correction. The thermal behavior of both analytes during pyrolysis and atomization stages were investigated in 0.028 mol l(-1) HNO3 and in 1 + 1 v/v diluted wine using mixtures of Pd(NO3)(2) + Mg(NO3)(2) and NH4H2PO4 + Mg(NO3)(2) as chemical modifiers. With 5 mug Pd + 3 mug Mg as the modifiers and a two-step pyrolysis (10 s at 400 degreesC and 10 s at 600 degreesC), the formation of carbonaceous residues inside the atomizer was avoided. For 20 mul of sample (wine + 0.056 mol l(-1) HNO3, 1 + 1, v/v) dispensed into the graphite tube, analytical curves in the 0.10-1.0 mug l(-1) Cd and 5.0-50 mug l(-1) Pb ranges were established. The characteristic mass was approximately 0.6 pg for Cd and 33 pg for Pb, and the lifetime of the tube was approximately 400 firings. The limits of detection (LOD) based on integrated absorbance (0.03 mug l(-1) for Cd, 0.8 mug l(-1) for Pb) exceeded the requirements of Brazilian Food Regulations (decree #55871 from Health Department), which establish the maximum permissible level for Cd at 200 mug l(-1) and for Pb at 500 mug l(-1). The relative standard deviations (n = 12) were typically < 8% for Cd and < 6% for Pb. The recoveries of Cd and Pb added to wine samples varied from 88 to 107% and 93 to 103%, respectively. The accuracy of the direct determination of Cd and Ph was checked for 10 table wines by comparing the results with those obtained for digested wine using single-element ET-AAS, which were in agreement at the 95% confidence level. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
A versatile voltammetric method for quantitative determination of fenbendazole (FBZ) in commercial tablets has been proposed, where direct dissolution of tablets is carried out in 0.1 mol l(-1) tetrabutylamoniun tetrafluorborate containing dimethylformamide solutions. Linear sweep (LSV), square wave (SWV) and differential pulse (DPV) voltammetry techniques were applied to study FBZ at a glassy carbon electrode, exhibiting a well defined irreversible oxidation peak at 1.15 V vs. SCE. This methodology allows a precise quantitative determination of FBZ presenting detection limits of 5.2 x 10(-5) (LSV), 5.0 x 10(-6) (DPV) and 5.0 x 10(-5) mol l(-1) (SWV). (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
A method has been developed for the direct determination of Se in nutritionally relevant foods by graphite furnace atomic absorption spectrometry. Tungsten/rhodium carbide coating on the integrated platform of a transversely heated graphite atomizer or W coating with co-injection of Pd(NO3)(2) were used as a permanent modifiers. Samples and reference solutions were spiked with 500 mu g L-1 As and absorbance variations due to changes in experimental conditions were minimized. For 20 mu L aqueous analytical solutions delivered into the graphite tube, analytical curves in the 5.0-40 mu g L-1 with good linear correlation were established. Pyrolysis and atomization temperatures were evaluated using pyrolysis and atomization curves, respectively. The optimized heating program (temperature, ramp time, hold time) of the graphite tube of the Perkin-Elmer SIMAA 6000 atomic absorption spectrometer was: dry steps (110 degrees C, 5 s, 10 s; 130 degrees C, 15 s, 15 s); air-assisted pyrolysis step (600 degrees C, 20 s, 40 s; 20 degrees C, 1 s, 40 s); pyrolysis step (1300 degrees C, 10 s, 20 s); atomization step (2100 degrees C, 0 s, 4 s); clean step (2550 degrees C, 1 s, 5 s). The method was applied for Se determination in coconut water, coconut milk, soybean milk, cow milk, tomato juice, mango juice, grape juice and drinking water samples and four standard reference materials and results were in agreement at 95% confidence level. The lifetime of the tube was 500 firings and the relative standard deviations of measurements of typical samples containing 25 mu gL(-1) Se were 3.0% and 6.0% (n = 12) with and without internal standardization, respectively. The limits of detection were in the 0.35 mu g L-1-0.7 mu g Se L-1 range. The accuracy of the proposed method was evaluated by an addition-recovery experiment and all recovered values were in the 98-109% range. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The use of Saccharomyces cerevisiae as a substrate to selectively retain Sn(II) and Sn(IV) has been investigated. Several factors affecting the retention of the analytes by yeast, such as pH, amount of biomass, temperature and time of contact were evaluated. Based on this study, a method for determination of Sn(II) and Sn(IV) combining inductively coupled plasma optical emission spectrometry (ICP OES) and solid phase extraction using Saccharomyces cerevisiae is proposed. The procedure consists of the selective retention of Sn(IV) by yeast at pH = 2.0 while Sn(II) remains in solution. Determination of tin in the solid phase was easily carried out by submitting a slurry of the yeast (0.5 g/40 mL) directly to ICP OES. The precision of the extraction procedure was characterized by an RSD lower than 4%. The detection limits of tin (3 sigma) in the solid phase and the liquid phase were 1.1 and 0.7 mu g L-1, respectively. The proposed approach was evaluated for determination of Sn(II) and Sn(IV) in spiked river water and real samples of industrial waste water (untreated and treated). For all samples, recoveries of spiked Sn(II) and Sn(IV) were between 85 and 112%.
Resumo:
The use of Saccharomyces cerevisiae as a sorbent material to separate Cd(II) and Cd-metallothionein complex (Cd-MT) has been explored. Solid-liquid phase extractions were carried out in batch mode and the main parameters of the process (pH, temperature, time of incubation, amount of biomass and analyte) were evaluated. Under optimized conditions, the yeast quantitatively retain (94 +/- 5%) the Cd(II) while 97 +/- 2% of the Cd-MT remain in the supernatant. on base of the findings of this study, a simple method is proposed to determine Cd(II) and Cd-MT in cytosols extracted from mouse kidney and crab hepatopancreas. Inductively coupled plasma optical emission spectrometry was used to quantify the analytes in solid and liquid phase. Determination of Cd in the solid phase was carried out by introducing a slurry of the yeast (0.0625 g/10 mL) directly to the inductively coupled plasma optical emission spectrometer. Mixed standards solutions, which also have been submitted to the extraction procedure, were used to quantify the analytes in the samples. Thus, matrix effects due to nebulization of the slurry were overcame. Limits of detection (3 sigma) for Cd(II) and Cd-MT were 1.5 and 1.2 mu g L-1, respectively. Relative standard deviations of signals were 4.2% for measurements in the slurry of solid phase and 2.1% for measurements in the liquid phase. Recoveries of the analytes in cytosol samples were between 76 and 114%. The concentrations of Cd(II) (2.4 +/- 0.5 mu g L-1) and Cd-MT (3.0 +/- 0.5 mu g L-1) found by using the proposed approach were close to those found by tangential-flow ultrafiltration technique (2.6 +/- 0.7 mu g L-1 for Cd(II) and 3.7 +/- 1.7 mu g L-1 for Cd-MT).
Resumo:
This study was carried out to investigate the voice characteristics of 40 healthy females with no voice disorders, ranging in age from 60 to 84 years ((X) over bar = 68.2 +/- 5.74 years). Measurements over all the entire phonational range were obtained by phonetography. The subjects were asked to sustain the vowel /a/ in modal register for a minimum of 5 seconds in the highest and lowest intensities after hearing the semitones C, E, G, and A, over all phonational ranges. The results indicated expansion of the low and reduction of high ends of the pitch range, decrease of the pitch numbers of the vocal range, restriction of the lowest and highest limits of the intensity, and reduction of either the maximum phonational range and the phonetogram area. The phonetography technique has shown efficacy to investigate the voice characteristics of elderly females.
Resumo:
Interest in the measurement of salivary cortisol has increased recently because saliva can be easily collected before and after an imposed stress. This study evaluated the relationship between plasma and salivary concentrations of cortisol following ACTH administration in calves ( experiment 1) and machine milking of adult cows ( experiment 2). A catheter was inserted into the jugular vein of all animals 72 h before the beginning of experiments. Blood and saliva samples were collected before and after ACTH administration (0.6 IU/kg BW) in calves or before and after machine milking of cows. Using a cotton swab, each saliva sample was taken immediately following the blood sample. In general, cortisol profiles were similar in plasma and saliva and correlated in both experiments; however, plasma concentrations were significantly higher than salivary concentrations. In addition, the differences between cortisol concentrations measured in saliva and plasma within each experiment varied substantially between animals and samples. Furthermore, in experiment 2, nearly 10% of salivary samples were below limits of detection. The sharp peaks in cortisol after ACTH administration in both the plasma and saliva were reflected adrenal stimulation. In addition, increases in cortisol in response to milking in both the plasma and saliva suggest that salivary sampling is a reliable option when studying cortisol responses to normal physiological events.
Resumo:
This work describes an analytical procedure for vanadium determination in human hair slurries by electrothermal AAS using longitudinal heating (LHGA) and transversal heating (THGA) graphite furnace atomizers. The samples were powdered using cryogenic grinding and the hair slurries containing 0.2% (m/v) were prepared in three different media for determination of vanadium: 0.14 mol L-1 HNO3, 0.1% (v/v) Triton X-100 and 0.1% (v/v) water soluble tertiary amines (CFA-C, pH 8). The limits of detection (LOD), limits of quantification (LOQ), and characteristic masses obtained were 0.28, 0.95 mu g L-1 and 35 pg (LHGA) and 0.34, 1.13 mu g L-1 and 78 pg (THGA), respectively. The accuracy of the analytical results obtained by the proposed procedure in both equipments was confirmed by a paired t-test at the 95% confidence level and compared with a conventional procedure based on acid digestion. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Organotin compounds, largely used as biocides in antifouling paints, are among the most toxic materials introduced into the aquatic environment. Sensitive analytical methods are thus required to characterize their occurrence in environmental and biological matrices. The comparison between two different photometric detectors in terms of analytical performance was carried out for the analysis of organotin compounds. A flame photometric detector (FPD) and a pulsed flame photometric detector (PFPD) were optimized. Their respective sensitivity, linearity range and selectivity were evaluated. Limits of detection obtained for a tributyltin compound (TBT) were 5.0 and 0.9 pg (as Sn) for the FPD and PFPD, respectively, using a 390 nm filter. The PFPD showed higher selectivity, besides reduced gas consumption in the flame, and is very attractive for organotin compound speciation in complex environmental matrices.
Resumo:
A capillary zone electrophoresis method using indirect UV detection for the analysis of chloride and sulfate in alcohol fuel samples was developed. The anions were analyzed in less than 3 min using an electrolyte containing 10 mmol 1(-1) chromate and 0.75 mmol 1(-1) hexamethonium bromide (HMB) as electroosmotic flow modifier. Coefficients of variation were better than 0.6% for migration time (n = 10) and between 2.05 and 2.82% for peak area repeatabilities. Analytical curves of peak area versus concentration in the range of 0.065-0.65 mg kg(-1) for chloride and 0.25-4.0 mg kg(-1) for sulfate were linear with coefficients of correlation higher than 0.9996. The limits of detection for sulfate and chloride were 0.033 and 0.041 mg kg(-1), respectively. Recovery values ranged from 85 to 103%. The method was successfully applied for the quantification of sulfate and chloride in five alcohol fuel samples. The concentration of sulfate varied from 0.45 to 3.12 mg kg(-1). Chloride concentrations were below the method's LOD.
Resumo:
A high performance liquid chromatography ( HPLC) method with electrochemical detection (ED) was developed for the determination of benzidine, 3,3-dimethylbenzidine, o-toluidine and 3,3-dichlorobenzidine in the wastewater of the textile industry. The aromatic amines were eluted on a reversed phase column Shimadzu Shimpack C-18 using acetonitrile + ammonium acetate (1 x 10(-4) mol L-1) at a ratio 46: 54 v/v as mobile phase, pumped at a flow rate of 1.0 mL min(-1). The electrochemical oxidation of the aromatic amines exhibits well-defined peaks at a potential range of +0.45 to +0.78 V on a glassy carbon electrode. Optimum working potentials for amperometric detection were from 0.70 V to +1.0 V vs. Ag/AgCl. Analytical curves for all the aromatic amines studied using the best experimental conditions present linear relationship from 1 x 10(-8) mol L-1 to 1.5 x 10(-5) mol L-1, r = 0.99965, n = 15. Detection limits of 4.5 nM (benzidine), 1.94 nM (o-toluidine), 7.69 nM (3,3-dimethylbenzidine), and 5.15 nM (3,3-dichlorobenzidine) were achieved, respectively. The detection limits were around 10 times lower than that verified for HPLC with ultra violet detection. The applicability of the method was demonstrated by the determination of benzidine in wastewater from the textile industry dealing with an azo dye processing plant.
Resumo:
In this work, a preconcentration and separation system based on continuous flow hydride generation is proposed to improve the determination of As and Se by total reflection X-ray fluorescence spectrometry. The generated hydrides are continuously separated from the liquid phase and collected in a chamber containing 250 mul of HCI/HNO3 1:1 (v/v) solution. Hydride generation conditions and collection of the hydrides were evaluated. Under optimised conditions, enrichment factors of 55 for As and 82 for Se were attained. Detection limits of 0.3 mug l(-1) for As and Se were obtained when 20 ml of sample was used. Analysis of a natural water standard reference material from National Institute of Standard and Technology (SRM-1640) was in agreement with the certified values at the 95% confidence level. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
This work describes a novel approach for the analysis of selected aldehydes (formaldehyde, acetaldehyde, propionaldehyde, and acrolein) and acetone in environmental samples using micellar electrokinetic chromatography (MEKC). The method is based on the reaction of carbonyl compounds with 3-methyl-2-benzothiazoline hydrazone (MBTH) that gives an azine intermediate with maximum absorbance at 216 nm. A systematic evaluation of sample dissolution medium was conducted as a means to enhancing sensitivity. In the best condition, samples were dissolved in 0.030 mol.L-1 tetraborate solution. This condition presented enhancement factors in the range of 35-54 for the aldehydes under investigation, computed as the improvement of the concentration limits of detection (LODs) with reference to the sample dissolved in pure water. The running buffer was 0.020 mol.L-1 tetraborate, pH 9.3, containing 0.050 mol-L-1 sodium dodecyly sulfate (SIDS). The overall methodology presented several advantages over established methods for aldehydes. Worthy mentioning that MBTH is available in high purity degree, dispensing laborious reagent purification procedures. A few method validation parameters were determined revealing good migration time repeatability (< 2.5% coefficient of variation, CV) and area repeatability (< 4% CV), excellent linearity (20-120 mug/L, r > 0.995) and adequate sensitivity for environmental applications. The LODs with respect to each single aldehyde were in the range of 0.54-4.0 mug.L-1 and 11 mug.L-1 for acetone. The methodology was applied to the determination of aldehydes indoors. Samples were collected in an impinger flask containing 0.05% MBTH solution, at a flow rate of 0.80 L.min(-1), during 2.5 h, at different times during the day. The most abundant carbonyls in the samples were acetone, followed by formaldehyde and acetaldehyde, with estimate peak concentrations of 452, 5.2 and 2.2 ppbv, respectively.
Resumo:
An analytical method for the determination of aldicarb, and its two major metabolites, aldicarb sulfoxide and aldicarb sulfone in fruits and vegetables is described. Briefly the method consisted of the use of a methanolic extraction, liquid-liquid extraction followed by solid-phase extraction clean-up. Afterwards, the final extract is analyzed by liquid chromatography-atmospheric pressure chemical ionization mass spectrometry (LC-APCI-MS). The specific fragment ion corresponding to [M-74](+) and the protonated molecular [M+K](+) ion were used for the unequivocal determination of aldicarb and its two major metabolites. The analytical performance of the proposed method and the results achieved were compared with those obtained using the common analytical method involving LC with post-column fluorescence detection (FL). The limits of detection varied between 0.2 and 1.3 ng but under LC-FL were slightly lower than when using LC-APCI-MS. However both methods permitted one to achieve the desired sensitivity for analyzing aldicarb and its metabolites in vegetables. The method developed in this work was applied to the trace determination of aldicarb and its metabolites in crop and orange extracts. (C) 2000 Elsevier B.V. B.V. All rights reserved.