97 resultados para Layered stannosilicates
Resumo:
The XAS/WAXS time-resolved method was applied for unraveling the complex mechanisms arising from the evolution of several metastable intermediates during the degradation of chlorine layered double hydroxide (LDH) upon heating to 450 °C, i.e., Zn2Al(OH)6·nH2O, ZnCuAl(OH)6·nH2O, Zn2Al 0.75Fe0.25(OH)6·nH2O, and ZnCuAl0.5Fe0.5(OH)6·nH2O. After a contraction of the interlamellar distance, attributed to the loss of intracrystalline water molecules, this distance experiences an expansion (T > 175-225 °C) before the breakdown of the lamellar framework around 275-295 °C. Amorphous prenucleus clusters with crystallo-chemical local order of zinc-based oxide and zinc-based spinel phases, and if any of copper-based oxide, are formed at T > 175-225 °C well before the loss of stacking of LDH layers. This distance expansion has been ascribed to the migration of Zn II from octahedral layers to tetrahedral sites in the interlayer space, nucleating the nano-ZnO or nano-ZnM2O4 (M = Al or Fe) amorphous prenuclei. The transformation of these nano-ZnO clusters toward ZnO crystallites proceeds through an agglomeration process occurring before the complete loss of layer stacking for Zn2Al(OH)6· nH2O and Zn2Al0.75Fe0.25(OH) 6·nH2O. For ZnCuAl(OH)6·nH 2O and ZnCuAl0.5Fe0.5(OH)6· nH2O, a cooperative effect between the formation of nano-CuO and nano-ZnAl2O4 amorphous clusters facilitates the topochemical transformation of LDH to spinel due to the contribution of octahedral CuII vacancy to ZnII diffusion. © 2013 American Chemical Society.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
Pós-graduação em Geociências e Meio Ambiente - IGCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciências Biológicas (Biologia Vegetal) - IBRC
Resumo:
Pós-graduação em Química - IQ
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Química - IQ
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fossil specimens of Heydrichia (?) poignantii, sp. nov. (Sporolithaceae, Sporolithales, Rhodophyta), representing the first confirmation of the genus in the fossil record, were discovered in thin sections of Albian limestones from the Riachuelo Formation, Sergipe Basin, and in thin sections of Albian -Cenomanian limestones from the Ponta do Mel Formation, Potiguar Basin in north-eastern Brazil. A detailed morphological-anatomical account of the species is provided, and its placement in Heydrichia is discussed in relation to current classification proposals. Comparisons with the four other known species of the genus, all non-fossil, show that H. poignantii is the only known species of Heydrichia in which thalli are encrusting to sparsely warty to horizontally layered with overlapping lamellate branches that commonly appear variously curved or arched, and in which thalli have sporangial complexes that become buried in the thallus. The evolutionary history of Heydrichia remains uncertain, but available data suggest that the genus may have diverged from the sporolithacean genus Sporolithon, known as early as Hauterivian times (c. 129.4-132.9 +/- 1 Ma) from Spain (and newly reported here from Switzerland), or it may have arisen from a graticulacean alga such as Graticula, dating from mid-Silurian times (c. 427-435 Ma). Current data also suggest that Heydrichia is more likely to have arrived in Brazil from Central Atlantic waters than from higher latitude South Atlantic waters. This implies that currently living species in southern Africa probably arose later from ancestors further equatorward in the South Atlantic, although confirming studies are needed. All non-fossil species of Heydrichia are known only from the southern hemisphere.
Resumo:
An optimal control framework to support the management and control of resources in a wide range of problems arising in agriculture is discussed. Lessons extracted from past research on the weed control problem and a survey of a vast body of pertinent literature led to the specification of key requirements to be met by a suitable optimization framework. The proposed layered control structure—including planning, coordination, and execution layers—relies on a set of nested optimization processes of which an “infinite horizon” Model Predictive Control scheme plays a key role in planning and coordination. Some challenges and recent results on the Pontryagin Maximum Principle for infinite horizon optimal control are also discussed.
Resumo:
Pós-graduação em Geociências e Meio Ambiente - IGCE