125 resultados para Laser scanning display


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To evaluate whether Nd:YAG laser irradiation of etched and unetched dentin through an uncured adhesive affected the microtensile bond strength (pTBS).Materials and Methods: Flat dentin surfaces were created in 19 extracted human third molars. Adper Single Bond (SB) adhesive was applied over etched (groups 1 to 3) or unetched dentin (groups 4 to 6). The dentin was then irradiated with a Nd:YAG laser through the uncured adhesive, using 0.75 or 1 W power settings, except for the control groups (groups 1 and 4). The adhesive was light cured and composite crowns were built up. After 24 h, the teeth were sectioned into beams, with cross-sectional areas of 0.49 mm(2), and were stressed under tension. Data were statistically analyzed using two-way ANOVA and Tukey's test (alpha = 5%). Dentin surfaces of fractured specimens and the interfaces of untested beams were observed under scanning electron microscopy (SEM).Results: Acid etching, laser irradiation, and their interaction significantly affected bonding (p < 0.05). Laser irradiation did not improve bonding of etched dentin to resin (p > 0.05). However, higher pTBS means were found on unetched lased dentin (groups 5 and 6), but only in comparison to group 4, where neither lasing nor etching was performed. Groups 4 to 6 showed the lowest pTBS means among all groups tested (p < 0.05). Laser irradiation did not change the characteristics of the hybrid layers created, while solidification globules were observed on lased dentin surfaces under SEM.Conclusion: Laser irradiation of dentin through the uncured adhesive did not significantly improve the pTBS in comparison to the suggested manufacturer's technique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dentin wall structural changes caused by 810-nm-diode laser irradiation can influence the sealing ability of endodontic sealers. The objective of this study was to evaluate the apical leakage of AH Plus and RealSeal resin-based sealers with and without prior diode laser irradiation. Fifty-two single-rooted mandibular premolars were prepared and divided into 4 groups, according to the endodontic sealer used and the use or non-use of laser irradiation. The protocol for laser irradiation was 2.5W, continuous wave in scanning mode, with 4 exposures per tooth. After sample preparation, apical leakage of 50% ammoniacal silver nitrate impregnation was analyzed. When the teeth were not exposed to irradiation, the Real Seal sealer achieved the highest scores, showing the least leakage, with significant differences at the 5% level (Kruskal-Wallis test, p = 0.0004), compared with AH Plus. When the teeth were exposed to the 810-nm-diode laser irradiation, the sealing ability of AH Plus sealer was improved (p = 0282). In the Real Seal groups, the intracanal laser irradiation did not interfere with the leakage index, showing similar results in the GRS and GRSd groups (p = 0.1009).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: the purpose of the present study was to investigate the effects of ND:YLF laser irradiation (1.31 J/cm(2); 250 mJ per pulse), acid etching, and hypermineralization on the shear bond strength (SBS) of the Scotchbond Multi-Purpose Plus (3M Dental Products) bonding system. Summary Background Data: Previous studies had shown that the pretreatment of the dentin substrate with laser irradiation can influence the SBS, Methods: Sixty bovine incisors were selected and stored at -18 degrees C, Dentinal buccal surface was exposed and radiographs were taken to control dentin thickness, the specimens were separated into 2 groups: (1) the control, which was kept in distilled water at 4 degrees C; (2) the hypermineralized, which was kept in hypermineralizing solution at 4 degrees C for 14 days, Each group was divided into 3 subgroups according to the type of dentin pretreatment used: M (acid etching + primer + bond); AL (acid etching + primer + bond + laser); and LA (laser + acid etching + primer + bond). A standard composite resin cylinder (Z100-3M) was bonded to the dentinal surface and the SBS performed on an Instron machine (500 Kg load cell at 0.5 mm/min), followed by scanning electron microscopy (SEM) and x-ray diffraction analysis. Results: Analysis of variance (ANOVA) determined that the pretreatments influenced the SBS values (p < 0.05): AL (9.96 MPa), M (7.28 MPa), and LA (4.87 MPa), the interaction between the group and pretreatment factors also influenced the SBS (p < 0.05). The highest values were obtained for the interaction control/AL (11.64 MPa), Conclusion: the results suggested that dentin treatment with laser after the application of the adhesive system is efficient in achieving higher bond strength and is promising as a possible new adhesive substrate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interface formed between the metal and the porcelain of a LASER welded Ni-Cr-Mo alloy was studied. The characterization was carried out through optical microscopy, scanning electron microscopy, X-ray dispersive spectroscopy-EDS and mechanical testing by three-point flexion test-TPE in the region LASER welded with and without the porcelain. The porcelain adhesion with the alloy alone is possible after the oxidation of the metallic surface and subsequent application of an adhesive called opaco. The applied porcelain, on the base metal and fusion zone presented some distinct behaviors. After the TPF test the base metal presented fractures while that in the fusion zone was completely gone. One noticed that the region submitted to the LASER welding showed less porcelain adhesion than the region of the base metal due to the microestructural refinement of the fusion zone. These results can be evidenced by the EDS of the studied regions. The TPF had demonstrated that the Ni-Cr-Mo alloy submitted to the LASER welding, undergone significant alterations in its mechanical properties after the application of the porcelain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A face lateral do corpo da mandíbula de ratos foi irradiada pelo laser CO2 com disparos contínuos de 10watts de potência. Após três meses, o sulco formado pela irradiação apresentou, em uma grande extensão, material fundido com diversas fraturas. Após sete meses, o periósteo neoformado recobriu amplas áreas da incisão, que apresentou ainda material carbonizado. Um ano após a incisão, o periósteo neoformado estava composto por fibras colágenas, que formaram feixes espessos, transversais à incisão, ou malhas regulares, que recobriram a incisão. Ainda nessa fase, resquícios de material carbonizado foram verificados, caracterizando um retardo na regeneração óssea

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: In vitro analysis of caries resistance of dental enamel under caries simulation after irradiation with Er:YAG laser. Background Data: More susceptible to caries development spots at adjacent hard tissues from cavity preparations of dental tissues using burrs or lasers are quite common. Methods: Thirteen caries-free third permanent human molars were distributed as follows: G1: sound control and caries control; G2: Er:YAG 100, 200, 300, or 400 mJ/ 10 Hz/ 3 sec.; G3: the same parameters of G2 followed by artificial caries simulation, through dynamic model of demineralization and remineralization (DE/RE). Caries resistance analysis was evaluated through scanning electron microscopy (SEM) and Ca/P rate (X-Rays spectroscopy - EDX). Results: Photomicrographs showed that the Er:YAG laser created craters with rough aspect which became more evident as the energy per pulse was increased, but without change of regular morphology of enamel prisms. Significant statistical changes among the irradiated and control groups was observed considering the Ca/P ratio. Conclusion: Irradiated groups showed higher caries resistance than control groups. However, it is not possible to affirm that the enamel surface accidental irradiation could be a benefit to caries resistance for other situations can be considered, as biofilm deposit, which could increase the caries susceptibility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The laser ablation method was used for depositing porous nanocrystalline indium-tin oxide thin films for gas sensing applications. Samples were prepared at different pressures using three gases (O-2, 0.8N(2):0.2O(2), N-2) and heat-treated in the same atmosphere used for the ablation process. X-ray diffraction results show that the films are not oriented and the grain sizes are in the range between 15 and 40 nm. The grains are round shaped for all samples and the porosity of the films increases with the deposition pressure. The degree of sintering after heat treatment increases for lower oxygen concentrations, generating fractures on the surface of the samples. Film thicknesses are in the range of I pm for all gases as determined from scanning electron microscopy cross-sections. Electrical resistance varies between 36.3 ohm for the film made at 10 Pa pressure in N-2 until 9.35 x 10(7) ohm for the film made at 100 Pa in O-2. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: the purpose of this study was to verify if the application of the Nd:YAG laser following pretreatment of dentin with adhesive systems that were not light cured in class V cavities and were prepared with Er:YAG laser would promote better sealing of the gingival margins when compared to cavities prepared the conventional way. Background Data: Previous studies had shown that the pretreatment of dentin with laser irradiation after the application of an adhesive system is efficient in achieving higher shear bond and tensile bond strength. Materials and Methods: Er:YAG laser (Kavo-Key, Germany) with 350 mJ, 4 Hz, and 116.7 J/cm(2) was used for cavity preparation. The conventional preparation was made with diamond bur mounted in high-speed turbine. Dentin treatment was accomplished using an Nd:YAG laser (Pulse Master 1000, ADT. USA) at 60 mJ, 10 Hz, and 74.65/cm(2) following application of the adhesive system. The cavities were stored with Single Bond/Z100 and Prime & Bond NT/TPH. Eighty bovine incisors were used, and class V preparations were done at buccal and lingual surfaces divided into eight groups: (1) Er:YAG preparation + Prime & Bond NT + TPH; (2) Er:YAG preparation + Single Bond + Z100; (3) Er:YAG preparation + Single Bond + Nd:YAG + Z100; (4) Er:YAG preparation + Prime & Bond NT + Nd:YAG + TPH; (5) conventional preparation + Prime & Bond NT + TPH; (6) conventional preparation + Single Bond + Z100; (7) conventional preparation + Single Bond + Nd:YAG + Z100; (8) conventional preparation + Prime & Bond NT + Nd:YAG + TPH. All specimens were thermocycled for 300 full cycles between 5 degreesC +/- 2 degreesC and 55 degreesC +/- 2 degreesC (dwell time of 30 sec), and stored in 50% silver nitrate solution for 24 h soaked in photodeveloping solution and exposed to fluorescent light for 6 h. After this procedure, the specimens were sectioned longitudinally in 3 portions and the extension of microleakage at the gingival wall was determined following a criteria ranging from 0 to 4 using scanning electron microscopy (SEM). The medium portion sectioned of each specimen was polished and prepared for nanoleakage avaliation by SEM. Results: Kruskall-Wallis and Miller statistical tests determined that group 3 presented less microleakage and nanoleakage. Conclusion: Application of the Nd:YAG laser following pretreatment of dentin with adhesive Single Bond non-photocured Single Bond adhesive in cavities prepared with Er:YAG promote better sealing of the gingival margins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: the purpose of this study is to make use of scanning electron microscopy in order to comparatively analyze the morphological alterations to human and bovine enamel and dentin. Earlier data: Many a morphological study involving Er:YAG laser can be found in the literature. Still, not a single study comparing the effects of this infrared laser in human and bovine teeth has been reported. Materials and Methods: Thirty-two slices of human and bovine enamel and dentin were evenly divided into four groups. With the exception of the control group, the samples were irradiated with Er:YAG laser, focused at a distance of 12 mm and a 10-Hz frequency, with 150, 250, and 350 mJ of output energy per pulse for 10 seconds. After irradiation all specimens were observed under a scanning electron microscope. Results: There was practically no morphological difference for those samples that underwent 150 mJ/pulse irradiation. The dentin exposed to 250 mJ had a few open dentinal tubules. These were seen in enamel after a 350 mJ irradiation, in which the energy was able to reach the dentin. Conclusions: the breadth of this study allows us to state that the pattern between the species grew more heterogenous as the energy density was increased and that irradiation with 150 mJ/pulse resulted in greater likeness in human and bovine enamel and dentin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surface modifications have been applied in endosteal bone devices in order to improve the osseointegration through direct contact between neoformed bone and the implant without an intervening soft tissue layer. Surface characteristics of titanium implants have been modified by addictive methods, such as metallic titanium, titanium oxide and hydroxyapatite powder plasma spray, as well as by subtractive methods, such as acid etching, acid etching associated with sandblasting by either AlO2 or TiO2, and recently by laser ablation. Surface modification for dental and medical implants can be obtained by using laser irradiation technique where its parameters like repetition rate, pulse energy, scanning speed and fluency must be taken into accounting to the appropriate surface topography. Surfaces of commercially pure Ti (cpTi) were modified by laser Nd:YVO4 in nine different parameters configurations, all under normal atmosphere. The samples were characterized by SEM and XRD refined by Rietveld method. The crystalline phases alpha Ti, beta Ti, Ti6O, Ti3O and TiO were formed by the melting and fast cooling processes during irradiation. The resulting phases on the irradiated surface were correlated with the laser beam parameters: the aim of the present work was to control titanium oxides formations in order to improve implants osseointegration by using a laser irradiation technique which is of great importance to biomaterial devices due to being a clean and reproducible process. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: the purpose of this study was to evaluate the effect of erbium:yttrium-aluminum-garnet laser instrumentation of root surfaces on the morphology of fibroblasts from continuous lineage. Method and materials: Dentinal slices with 4 mm(2) of surface area were obtained from teeth extracted for severe periodontal involvement. Specimens were assigned to one of three treatment groups: group 1, application of the laser with an energy level of 250 mJ at 103 pulses per second; group 2, application of the laser with an energy level of 80 mJ at 166 pulses per second; and group 3, similar to group 2, but with concomitant water irrigation of the device. The specimens were incubated in multiwell plates containing cell culture media. After 24 hours, the specimens were submitted to routine preparation for scanning electron microscopy. Three independent and blind examiners used photomicrographs to evaluate the morphology of the fibroblasts: 0 = without cells; 1 = flat cells; 2 = round cells; and 3 = combination of round and flat cells. Results: Statistical analysis indicated that there were significant differences among treatment groups and that group 3 was significantly different from groups 1 and 2. Conclusion: There was no difference between groups 1 and 2 in the morphology of fibroblasts. Laser instrumentation with concomitant irrigation impaired the adhesion of fibroblasts to dentinal surfaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel setup for imaging and interferometry through reflection holography with Bi12TiPO20(BTO) sillenite photorefractive crystals is proposed. A variation of the lensless Denisiuk arrangement was developed resulting in a compact, robust and simple interferometer. A red He-Ne laser was used as light source and the holographic recording occurred by diffusion with the grating vector parallel to the crystal [0 0 1]-axis. In order to enhance the holographic image quality and reduce noise a polarizing beam splitter (PBS) was positioned at the BTO input and the crystal was tilted around the [0 0 1]-axis. This enabled the orthogonally polarized transmission and diffracted beams to be separated by the PBS, providing the holographic image only. The possibility of performing deformation and strain analysis as well as vibration measurement of small objects was demonstrated. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study evaluated the microleakage of pit and fissure sealants after different surface preparation (invasive technique and laser irradiation) and the use of different materials (fluoride resin-filled sealant, resin-modified glass ionomer cement and adhesive system). Eighty-four pre molars were used in this study, which were divided into seven groups. After the accomplishment of the different treatments, these were submitted to thermocycling process and assess for microleakage by examination under an epifluorescent microscope and scored zero to seven. Two specimens of each group were observed under scanning electron microscope (SEM). The results showed that laser irradiation did not lessen microleakage in pit and fissures when using a filled-resin sealant with fluoride or a resin-modified glass ionomer cement. The use of laser irradiation and adhesive system, followed by a resin-filled sealant with fluoride, showed the lowest microleakage scores in pit and fissures. Comparing this group to the resin-modified glass ionomer cement group, there was statistical significance. The use of a adhesive system decreased microleakage when using a fluoride resin-filled sealant with or without previous laser irradiation; although it was not statistically significant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: The purpose of this study was to evaluate the effect of erbium:yttrium-aluminum-garnet laser instrumentation of root surfaces on the morphology of fibroblasts from continuous lineage. Method and materials: Dentinal slices with 4 mm2 of surface area were obtained from teeth extracted for severe periodontal involvement. Specimens were assigned to one of three treatment groups: group 1, application of the laser with an energy level of 250 mJ at 103 pulses per second; group 2, application of the laser with an energy level of 80 mJ at 166 pulses per second; and group 3, similar to group 2, but with concomitant water irrigation of the device. The specimens were incubated in multiwell plates containing cell culture media. After 24 hours, the specimens were submitted to routine preparation for scanning electron microscopy. Three independent and blind examiners used photomicrographs to evaluate the morphology of the fibroblasts: 0 = without cells; 1 = flat cells; 2 = round cells; and 3 = combination of round and flat cells. Results: Statistical analysis indicated that there were significant differences among treatment groups and that group 3 was significantly different from groups 1 and 2. Conclusion: There was no difference between groups 1 and 2 in the morphology of fibroblasts. Laser instrumentation with concomitant irrigation impaired the adhesion of fibroblasts to dentinal surfaces.