112 resultados para Inspiratory muscle training


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Malnutrition is a common health problem in developing countries and is associated with alterations in glucose metabolism. In the present study we examine the effects of chronic aerobic exercise on some aspects of glucose metabolism in protein-deficient rats. Two groups of adult rats (90 days old) were used: Normal protein group (17%P)- kept on a normal protein diet during intra-uterine and postnatal life and Low protein group (6%P)- kept on a low protein diet during intrauterine and post natal life. After weaning (21 days old), half of the 17%P and 6%P rats were assigned to a Sedentary (Sed) or an Exercise-trained (Exerc = swimming, 1 hr/day, 5 days/week, supporting an overload of 5% of body weight) subgroup. The area under blood glucose concentration curve (Delta G) after an oral glucose load was higher in 17%P Sed rats (20%) than in other rats and lower in 6%P Exerc (11%) in relation to 6% Sed rats. The post-glucose increase in blood insulin (Delta I) was also higher in 17%P Sed (9%) than in other rats. on the other hand, the glucose disappearance rate after exogenous subcutaneous insulin administration (Kitt) was lower in 17%P Sed rats (66%) than in other rats. Glucose uptake by soleus muscle was higher in Exerc rats (30%) than in Sed rats. Soleus muscle glycogen synthesis was reduced in 6%P Sed rats (41%) compared to 17%P Sed rats but was restored in 6%P Exerc rats. Glycogen concentration was elevated in Exerc (32%) rats in comparison to Sed rats. The present results indicate that glucose-induced insulin release is reduced in rats fed low protein diet. This defect is counteracted by an increase in the sensitivity of the target tissues to insulin and glucose homeostasis is maintained. This adaptation allows protein deficient rats to preserve the ability to appropriately adapt to aerobic physical exercise training. (C) 2000 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mouth breathing may cause changes in muscle activity, because an upper airway obstruction leads may cause a person to extend his/her head forward, demanding a higher inspiratory effort on the accessory muscles (sternocleidomastoids). This purpose of this study is to compare, using electromyography (EMG), the activity pattern the sternocleidomastoid and upper trapezius muscles in mouth breathing children and nasal breathing children. Forty-six children, ages 8-12 years, 33 male and 13 female were included. The selected children were divided into two groups: Group I consisted of 26 mouth breathing children, and Group II, 20 nasal breathing children. EMG recordings were made using surface electrodes bilaterally in the areas of the sternocleidomastoideus and upper trapezius muscles, while relaxed and during maximal voluntary contraction. The data were analyzed using the Kruskall-Wallis statistical test. The results indicated higher activity during relaxation and lower activity during maximal voluntary contraction in mouth breathers when compared to the nasal breathers. It is suggested that the activity pattern of the sternocleidomastoid and upper trapezius muscles differs between mouth breathing children and nasal breathing children. This may be attributed to changes in body posture which causes muscular imbalance. Because of the limitations of surface EMG, the results need to be confirmed by adding force measurements and repeating the experiments with matched subjects. Copyright © 2004 by CHROMA, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Papoti, M., L.E.B. Martins, S.A. Cunha, A.M. Zagatto, and C.A. Gobatto. Effects of taper on swimming force and swimmer performance after an experimental ten-week training program. J. Strength Cond. Res. 21(2):538-542. 2007.- The purpose of this research was to examine how an 11-day taper after an 8.5-week experimental training cycle affected lactate levels during maximal exercise, mean force, and performance in training swimmers, independent of shaving, psychological changes, and postcompetition effects. Fourteen competition swimmers with shaved legs and torsos were recruited from the São Paulo Aquatic Federation. The training cycle consisted of a basic training period (endurance and quality phases) of 8.5 weeks, with 5,800 m·d -1 mean training volume and 6 d·wk -1 frequency; and a taper period (TP) of 1.5 weeks' duration that incorporated a 48% reduction in weekly volume without altering intensity. Attained swimming force (SF) and maximal performance over 200m maximal swim (Pmax) before and after taper were measured. After taper, SF and Pmax improved 3.6 and 1.6%, respectively (p < 0.05). There were positive correlations (p < 0.05) between SF and Pmax before (r = 0.86) and after (r = 0.83) the taper phase. Peak lactate concentrations after SF were unaltered before (6.79 ± 1.2 mM) and after (7.15 ± 1.8 mM) TP. Results showed that TP improved mean swimming velocity, but not in the same proportion as force after taper, suggesting that there are other factors influencing performance in faster swimming. © 2007 National Strength & Conditioning Association.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background. Obesity has been associated with a variety of disease such as type II diabetes mellitus, arterial hypertension and atherosclerosis. Evidences have shown that exercise training promotes beneficial effects on these disorders, but the underlying mechanisms are not fully understood. The aim of this study was to investigate whether physical preconditioning prevents the deleterious effect of high caloric diet in vascular reactivity of rat aortic and mesenteric rings. Methods. Male Wistar rats were divided into sedentary (SD); trained (TR); sedentary diet (SDD) and trained diet (TRD) groups. Run training (RT) was performed in sessions of 60 min, 5 days/week for 12 weeks (70-80% VO2max). Triglycerides, glucose, insulin and nitrite/nitrate concentrations (NOx -) were measured. Concentration- response curves to acetylcholine (ACh) and sodium nitroprusside (SNP) were obtained. Expression of Cu/Zn superoxide dismutase (SOD-1) was assessed by Western blotting. Results. High caloric diet increased triglycerides concentration (SDD: 216 ± 25 mg/dl) and exercise training restored to the baseline value (TRD: 89 ± 9 mg/dl). Physical preconditioning significantly reduced insulin levels in both groups (TR: 0.54 ± 0.1 and TRD: 1.24 ± 0.3 ng/ml) as compared to sedentary animals (SD: 0.87 ± 0.1 and SDD: 2.57 ± 0.3 ng/ml). On the other hand, glucose concentration was slightly increased by high caloric diet, and RT did not modify this parameter (SD: 126 ± 6; TR: 140 ± 8; SDD: 156 ± 8 and TRD 153 ± 9 mg/dl). Neither high caloric diet nor RT modified NO x - levels (SD: 27 ± 4; TR: 28 ± 6; SDD: 27 ± 3 and TRD: 30 ± 2 μM). Functional assays showed that high caloric diet impaired the relaxing response to ACh in mesenteric (about 13%), but not in aortic rings. RT improved the relaxing responses to ACh either in aortic (28%, for TR and 16%, to TRD groups) or mesenteric rings (10%, for TR and 17%, to TRD groups) that was accompanied by up-regulation of SOD-1 expression and reduction in triglycerides levels. Conclusion. The improvement in endothelial function by physical preconditioning in mesenteric and aortic arteries from high caloric fed-rats was directly related to an increase in NO bioavailability to the smooth muscle mostly due to SOD-1 up regulation. © 2008 de Moraes et al; licensee BioMed Central Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to determine the time to restore the biceps brachii (BB) electromyographic (EMG) activity after the biceps curl (BC) exercise, at different intensities. Ten males performed initially maximal voluntary isometric contractions (MVC) of the elbow flexors, followed by one isometric submaximal contraction at 50% MVC (reference contraction). After this, four bouts of the BC at 25%, 30%, 35%, and 40% 1 RM during 1 minute (randomly assigned, with 10 minutes rest between them) were performed. During the rest intervals at preestablished moments (15 seconds, 1, 3, 5, and 10 min), isometric 50% MVC were performed. The EMG variables (root mean square [RMS], zero crossings [ZC], median frequency, [MF] and peak power [PP]) at rest were compared with reference values. Immediately after the exercise, RMS and PP increased, while ZC and MF decreased, indicating fatigue. After 1 minute most of the variables were similar to the reference. Different load levels did not affect the EMG recovery. In conclusion, the EMG variables recovered after 1 minute rest, indicating the optimal muscular condition for subsequent bouts. Copyright © Taylor & Francis Group, LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to investigate if chronic eccentric strength training (ST) affects heart rate (HR) and heart rate variability (HRV) during sub-maximal isometric voluntary contractions (SIVC). The training group (TG) (9 men, 62 ± 2) was submitted to ST (12 weeks, 2 days/week, 2 - 4 sets of 8-12 repetitions at 75-80% peak torque (PT). The control group (CG) (8 men, 64 ± 4) did not perform ST. The HR and the HRV (RMSSD index) were evaluated during SIVC of the knee extension (15, 30 and 40% of PT). ST increased the eccentric torque only in TG, but did not change the isometric PT and the duration of SIVC. During SIVC, the HR response pattern and the RMSSD index were similar for both groups in pre- and post-training evaluations. Although ST increased the eccentric torque in the TG, it did not generate changes in HR or HRV. © Springer-Verlag 2008.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To examine the evolution of endurance-exercise behaviour, we have selectively bred four replicate lines of laboratory mice (Mus domesticus) for high voluntary wheel running ('high runner' or HR lines), while also maintaining four non-selected control (C) lines. By generation 16, HR mice ran ∼2.7-fold more than C mice, mainly by running faster (especially in females), a differential maintained through subsequent generations, suggesting an evolutionary limit of unknown origin. We hypothesized that HR mice would have higher glycogen levels before nightly running, show greater depletion of those depots during their more intense wheel running, and have increased glycogen synthase activity and GLUT-4 protein in skeletal muscle. We sampled females from generation 35 at three times (photophase 07:00 h-19:00 h) during days 5-6 of wheel access, as in the routine selection protocol: Group 1, day 5, 16:00 h-17:30 h, wheels blocked from 13:00 h; Group 2, day 6, 02:00 h-03:30 h (immediately after peak running); and Group 3, day 6, 07:00 h-08:30 h. An additional Group 4, sampled 16:00 h-17:30 h, never had wheels. HR individuals with the mini-muscle phenotype (50% reduced hindlimb muscle mass) were distinguished for statistical analyses comparing C, HR normal, and HR mini. HR mini ran more than HR normal, and at higher speeds, which might explain why they have been favored by the selective-breeding protocol. Plasma glucose was higher in Group 1 than in Group 4, indicating a training effect (phenotypic plasticity). Without wheels, no differences in gastrocnemius GLUT-4 were observed. After 5 days with wheels, all mice showed elevated GLUT-4, but HR normal and mini were 2.5-fold higher than C. At all times and irrespective of wheel access, HR mini showed approximately three-fold higher [glycogen] in gastrocnemius and altered glycogen synthase activity. HR mini also showed elevated glycogen in soleus when sampled during peak running. All mice showed some glycogen depletion during nightly wheel running, in muscles and/or liver, but the magnitude of this depletion was not large and hence does not seem to be limiting to the evolution of even-higher wheel running.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to develop an experimental protocol for endurance swimming periodization training in rats similar to high performance training in humans, and compare it to continuous training. Three groups of male Wistar rats (90 days old) were allocated to Sedentary Control (SC); Continuous Training (CT); and Periodized Experimental Training (PET) groups. PET and CT trained 5 days/week, over five weeks, CT: continuous training supporting a 5% body mass (bm) load for 40 min/day; PET: training subdivided into basic, specific, and taper periods, with overload changed daily (volume-intensity, continuous, and interval training). Total training overload was quantified (% bm X exercise time in training session) and equalized for the two trained groups. Glucose ([ 3H]2-deoxyglucose) uptake, incorporation to glycogen (synthesis), glucose oxidation (CO 2 production), and lactate production from [U- 14C]glucose by soleus muscle strips incubated in presence of insulin (100μU/mL) were evaluated 48h after the last training session. The load equivalent at 5.5mM blood lactate concentration ([La-5.5]) was determined in the incremental test. Lactate production was similar in all groups. PET presented higher glucose uptake (59%) than SC, and higher glycogen synthesis (51 and 22%) and glucose oxidation (147 and 178%) than SC and CT, respectively. CT presented higher glycogen synthesis rates (23%) than SC. Load [La-5.5] was similar between trained groups and higher than SC. PET presented higher values for glucose metabolism than CT and SC. These results open up new perspectives for studying training methods used in high performance sport through swimming exercise in rats.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims: The effect of exercise training (ET) on vascular responsiveness in diabetes mellitus has been largely well studied. However, limited studies have investigated the effects of ET on functional responses of the corpus cavernosum (CC) in diabetic animals. Therefore, the aim of this study was to investigate whether prior ET prevents the impairment of erectile function in streptozotocin-induced diabetic rats. Main methods: Rats were exercised for four weeks prior to the induction of diabetes, and then again for another 4 weeks thereafter. Concentration-response curves to acetylcholine, sodium nitroprusside, Y-27632, BAY 412272 and phenylephrine (PE) were obtained in CC. The excitatory and inhibitory effects of electrical-field stimulation were also evaluated. Key findings: Plasma SOD levels were markedly decreased in the sedentary diabetic group (D-SD) as compared to control sedentary animals (C-SD), approximately 53% (P < 0.05) and this reduction was restored in trained diabetic animals. Physical training restored the impairment of endothelium-dependent and -independent relaxation responses seen in the D-SD group. The potency values for Y-27632 in the CC were significantly reduced in the D-SD group, which was reversed by physical training. The impairment of electrical-field stimulation (EFS)-induced relaxation seen in the D-SD group was restored by physical training. On the other hand, both EFS-induced contractions and concentration-response curves to PE in cavernosal strips were not modified by either diabetes or physical training. Significance: Practice of regular physical exercise may be an important approach in preventing erectile dysfunction associated with diabetes mellitus by re-establishment of the balance between NO production and its inactivation. © 2010 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)