90 resultados para Images AVIRIS
Resumo:
Aims: This study compared fractal dimension (FD) values on mandibular trabecular bone in digital and digitized images at different spatial and contrast resolutions. Materials and Methods: 12 radiographs of dried human mandibles were obtained using custom-fabricated hybrid image receptors composed of a periapical radiographic film and a photostimulable phosphor plate (PSP). The film/ PSP sets were disassembled, and the PSPs produced images with 600 dots per inch (dpi) and 16 bits. These images were exported as tagged image file format (TIFF), 16 and 8 bits, and 600, 300 and 150 dpi. The films were processed and digitized 3 times on a flatbed scanner, producing TIFF images with 600, 300 and 150 dpi, and 8 bits. On each image, a circular region of interest was selected on the trabecular alveolar bone, away from root apices and FD was calculated by tile counting method. Two-way ANOVA and Tukey’s test were conducted to compare the mean values of FD, according to image type and spatial resolution (α = 5%). Results: Spatial resolution was directly and inversely proportional to FD mean values and standard deviation, respectively. Spatial resolution of 150 dpi yielded significant lower mean values of FD than the resolutions of 600 and 300 dpi ( P < 0.05). A nonsignificant variability was observed for the image types ( P > 0.05). The interaction between type of image and level of spatial resolution was not signi fi cant (P > 0.05). Conclusion: Under the tested, conditions, FD values of the mandibular trabecular bone assessed either by digital or digitized images did not change. Furthermore, these values were in fluenced by lower spatial resolution but not by contrast resolution.
Resumo:
The human dentition is naturally translucent, opalescent and fluorescent. Differences between the level of fluorescence of tooth structure and restorative materials may result in distinct metameric properties and consequently perceptible disparate esthetic behavior, which impairs the esthetic result of the restorations, frustrating both patients and staff. In this study, we evaluated the level of fluorescence of different composites (Durafill in tones A2 (Du), Charisma in tones A2 (Ch), Venus in tone A2 (Ve), Opallis enamel and dentin in tones A2 (OPD and OPE), Point 4 in tones A2 (P4), Z100 in tones A2 ( Z1), Z250 in tones A2 (Z2), Te-Econom in tones A2 (TE), Tetric Ceram in tones A2 (TC), Tetric Ceram N in tones A1, A2, A4 (TN1, TN2, TN4), Four seasons enamel and dentin in tones A2 (and 4SD 4SE), Empress Direct enamel and dentin in tones A2 (EDE and EDD) and Brilliant in tones A2 (Br)). Cylindrical specimens were prepared, coded and photographed in a standardized manner with a Canon EOS digital camera (400 ISO, 2.8 aperture and 1/ 30 speed), in a dark environment under the action of UV light (25 W). The images were analyzed with the software ScanWhite©-DMC/Darwin systems. The results showed statistical differences between the groups (p < 0.05), and between these same groups and the average fluorescence of the dentition of young (18 to 25 years) and adults (40 to 45 years) taken as control. It can be concluded that: Composites Z100, Z250 (3M ESPE) and Point 4 (Kerr) do not match with the fluorescence of human dentition and the fluorescence of the materials was found to be affected by their own tone.
Resumo:
This study proposes the application of fractal descriptors method to the discrimination of microscopy images of plant leaves. Fractal descriptors have demonstrated to be a powerful discriminative method in image analysis, mainly for the discrimination of natural objects. In fact, these descriptors express the spatial arrangement of pixels inside the texture under different scales and such arrangements are directly related to physical properties inherent to the material depicted in the image. Here, we employ the Bouligand-Minkowski descriptors. These are obtained by the dilation of a surface mapping the gray-level texture. The classification of the microscopy images is performed by the well-known Support Vector Machine (SVM) method and we compare the success rate with other literature texture analysis methods. The proposed method achieved a correctness rate of 89%, while the second best solution, the Co-occurrence descriptors, yielded only 78%. This clear advantage of fractal descriptors demonstrates the potential of such approach in the analysis of the plant microscopy images.
Resumo:
Lymphoma is a type of cancer that affects the immune system, and is classified as Hodgkin or non-Hodgkin. It is one of the ten types of cancer that are the most common on earth. Among all malignant neoplasms diagnosed in the world, lymphoma ranges from three to four percent of them. Our work presents a study of some filters devoted to enhancing images of lymphoma at the pre-processing step. Here the enhancement is useful for removing noise from the digital images. We have analysed the noise caused by different sources like room vibration, scraps and defocusing, and in the following classes of lymphoma: follicular, mantle cell and B-cell chronic lymphocytic leukemia. The filters Gaussian, Median and Mean-Shift were applied to different colour models (RGB, Lab and HSV). Afterwards, we performed a quantitative analysis of the images by means of the Structural Similarity Index. This was done in order to evaluate the similarity between the images. In all cases we have obtained a certainty of at least 75%, which rises to 99% if one considers only HSV. Namely, we have concluded that HSV is an important choice of colour model at pre-processing histological images of lymphoma, because in this case the resulting image will get the best enhancement.
Automatic method to classify images based on multiscale fractal descriptors and paraconsistent logic
Resumo:
In this study is presented an automatic method to classify images from fractal descriptors as decision rules, such as multiscale fractal dimension and lacunarity. The proposed methodology was divided in three steps: quantification of the regions of interest with fractal dimension and lacunarity, techniques under a multiscale approach; definition of reference patterns, which are the limits of each studied group; and, classification of each group, considering the combination of the reference patterns with signals maximization (an approach commonly considered in paraconsistent logic). The proposed method was used to classify histological prostatic images, aiming the diagnostic of prostate cancer. The accuracy levels were important, overcoming those obtained with Support Vector Machine (SVM) and Bestfirst Decicion Tree (BFTree) classifiers. The proposed approach allows recognize and classify patterns, offering the advantage of giving comprehensive results to the specialists.
Resumo:
Non-Hodgkin lymphomas are of many distinct types, and different classification systems make it difficult to diagnose them correctly. Many of these systems classify lymphomas only based on what they look like under a microscope. In 2008 the World Health Organisation (WHO) introduced the most recent system, which also considers the chromosome features of the lymphoma cells and the presence of certain proteins on their surface. The WHO system is the one that we apply in this work. Herewith we present an automatic method to classify histological images of three types of non-Hodgkin lymphoma. Our method is based on the Stationary Wavelet Transform (SWT), and it consists of three steps: 1) extracting sub-bands from the histological image through SWT, 2) applying Analysis of Variance (ANOVA) to clean noise and select the most relevant information, 3) classifying it by the Support Vector Machine (SVM) algorithm. The kernel types Linear, RBF and Polynomial were evaluated with our method applied to 210 images of lymphoma from the National Institute on Aging. We concluded that the following combination led to the most relevant results: detail sub-band, ANOVA and SVM with Linear and RBF kernels.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The identification of tree species is a key step for sustainable management plans of forest resources, as well as for several other applications that are based on such surveys. However, the present available techniques are dependent on the presence of tree structures, such as flowers, fruits, and leaves, limiting the identification process to certain periods of the year Therefore, this article introduces a study on the application of statistical parameters for texture classification of tree trunk images. For that, 540 samples from five Brazilian native deciduous species were acquired and measures of entropy, uniformity, smoothness, asymmetry (third moment), mean, and standard deviation were obtained from the presented textures. Using a decision tree, a biometric species identification system was constructed and resulted to a 0.84 average precision rate for species classification with 0.83accuracy and 0.79 agreement. Thus, it can be considered that the use of texture presented in trunk images can represent an important advance in tree identification, since the limitations of the current techniques can be overcome.
Resumo:
The article discusses a proposal of displacement measurement using a unique digital camera aiming at to exploit its feasibility for Modal Analysis applications. The proposal discusses a non-contact measuring approach able to measure multiple points simultaneously by using a unique digital camera. A modal analysis of a reduced scale lab building structure based only at the responses of the structure measured with the camera is presented. It focuses at the feasibility of using a simple ordinary camera for performing the output only modal analysis of structures and its advantage. The modal parameters of the structure are estimated from the camera data and also by using ordinary experimental modal analysis based on the Frequency Response Function (FRF) obtained by using the usual sensors like accelerometer and force cell. The comparison of the both analysis showed that the technique is promising noncontact measuring tool relatively simple and effective to be used in structural modal analysis
Resumo:
Digital models are an alternative for carrying out analyses and devising treatment plans in orthodontics. The objective of this study was to evaluate the accuracy and the reproducibility of measurements of tooth sizes, interdental distances and analyses of occlusion using plaster models and their digital images. Thirty pairs of plaster models were chosen at random, and the digital images of each plaster model were obtained using a laser scanner (3Shape R-700, 3Shape A/S). With the plaster models, the measurements were taken using a caliper (Mitutoyo Digimatic(®), Mitutoyo (UK) Ltd) and the MicroScribe (MS) 3DX (Immersion, San Jose, Calif). For the digital images, the measurement tools used were those from the O3d software (Widialabs, Brazil). The data obtained were compared statistically using the Dahlberg formula, analysis of variance and the Tukey test (p < 0.05). The majority of the measurements, obtained using the caliper and O3d were identical, and both were significantly different from those obtained using the MS. Intra-examiner agreement was lowest when using the MS. The results demonstrated that the accuracy and reproducibility of the tooth measurements and analyses from the plaster models using the caliper and from the digital models using O3d software were identical.
Resumo:
Reservoirs are artificial environments built by humans, and the impacts of these environments are not completely known. Retention time and high nutrient availability in the water increases the eutrophic level. Eutrophication is directly correlated to primary productivity by phytoplankton. These organisms have an important role in the environment. However, high concentrations of determined species can lead to public health problems. Species of cyanobacteria produce toxins that in determined concentrations can cause serious diseases in the liver and nervous system, which could lead to death. Phytoplankton has photoactive pigments that can be used to identify these toxins. Thus, remote sensing data is a viable alternative for mapping these pigments, and consequently, the trophic. Chlorophyll-a (Chl-a) is present in all phytoplankton species. Therefore, the aim of this work was to evaluate the performance of images of the sensor Operational Land Imager (OLI) onboard the Landsat-8 satellite in determining Chl-a concentrations and estimating the trophic level in a tropical reservoir. Empirical models were fitted using data from two field surveys conducted in May and October 2014 (Austral Autumn and Austral Spring, respectively). Models were applied in a temporal series of OLI images from May 2013 to October 2014. The estimated Chl-a concentration was used to classify the trophic level from a trophic state index that adopted the concentration of this pigment-like parameter. The models of Chl-a concentration showed reasonable results, but their performance was likely impaired by the atmospheric correction. Consequently, the trophic level classification also did not obtain better results.
Resumo:
The aim of this study was to evaluate the radiopacity of two conventional cements (Zinc Cement and Ketac Cem Easymix), one resin-modified glass ionomer cement (RelyX Luting 2) and six resin cements (Multilink, Bistite II DC, RelyX ARC, Fill Magic Dual Cement, Enforce and Panavia F) by digitization of images. Methods. Five disc-shaped specimens (10×1.0 mm) were made for each material, according to ISO 4049. After setting of the cements, radiographs were made using occlusal films and a graduated aluminum stepwedge varying from 1.0 to 16 mm in thickness. The radiographs were digitized, and the radiopacity of the cements was compared with the aluminum stepwedge using the software VIXWIN-2000. Data (mmAl) were submitted to one-way ANOVA and Tukey's test (=0.05). Results. The Zinc Cement was the most radiopaque material tested (<0.05). The resin cements presented higher radiopacity (<0.05) than the conventional (Ketac Cem Easymix) or resin-modified glass ionomer (RelyX Luting 2) cements, except for the Fill Magic Dual Cement and Enforce. The Multilink presented the highest radiopacity (<0.05) among the resin cements. Conclusion. The glass ionomer-based cements (Ketac Cem Easymix and RelyX Luting 2) and the resin cements (Fill Magic Dual Cement and Enforce) showed lower radiopacity values than the minimum recommended by the ISO standard.
Resumo:
Objectives The objective of this study was to develop a technique for detecting cortical bone dimensional changes in patients with bisphosphonate-related osteonecrosis of the jaw (BRONJ). Study Design Subjects with BRONJ who had cone-beam computed tomography imaging were selected, with age- and gender-matched controls. Mandibular cortical bone measurements to detect bisphosphonate-related cortical bone changes were made inferior to mental foramen, in 3 different ways: within a fixed sized rectangle, in a rectangle varying with the cortical height, and a ratio between area and height. Results Twelve BRONJ cases and 66 controls were evaluated. The cortical bone measurements were significantly higher in cases than controls for all 3 techniques. The bone measurements were strongly associated with BRONJ case status (odds ratio 3.36-7.84). The inter-rater reliability coefficients were high for all techniques (0.71-0.90). Conclusions Mandibular cortical bone measurement is a potentially useful tool in the detection of bone dimensional changes caused by bisphosphonates. Long-term administration of bisphosphonates (BPs) affects bone quality and metabolism following accumulation in bone.1 Since the first cases of bisphosphonate-related osteonecrosis of the jaw (BRONJ) were published in 2003,2 there has been a search for factors that can predict the onset of the condition. Oral and intravenous BPs reduce bone resorption, increase mineral content of bone, and alter bony architecture.3, 4, 5 and 6 Previous studies have demonstrated these changes both radiographically and following histologic analysis.1, 3, 7, 8, 9 and 10 The BP-related jaw changes may present radiological features, such as thickening of lamina dura and cortical borders, diffuse sclerosis, and narrowing of the mandibular canal3 and 11; however, oral radiographs of patients taking BPs do not consistently show radiographic changes to the jaws.11 and 12 The challenge is to find imaging tools that could improve the detection of changes in the bone associated with BP use. Various skeletal radiographic features associated with BRONJ in conventional periapical and panoramic radiographs, computed tomography, magnetic resonance imaging, and nuclear bone scanning have been described.3, 8, 9, 10 and 11 There has also been a search for BP-related quantitative methods for the evaluation of radiographic images, to avoid observer subjectivity in interpretation. Factors thought to be important include trabecular and cortical structure, and bone mineralization.4 Consequently, measurable bone data have been reported in subjects taking BPs through many techniques, including bone density, architecture, and cortical bone thickness.1, 4, 7 and 13 Trabecular microarchitecture of postmenopausal women has been evaluated with noninvasive techniques, such as high-resolution magnetic resonance images showing less deterioration of the bone 1 year after initiation of oral BP therapy.4 A decrease in bone turnover and a trend for an increase in the bone wall thickness has been detected by histomorphometry in subjects taking BPs.1 Alterations in the cortical structure of the second metacarpal have been detected in digital x-ray radiogrammetry of postmenopausal women treated with BPs.7 Mandibular cortical width may be measured on dental panoramic radiographs, and it has been suggested as a screening tool for referring patients for bone densitometry for osteoporosis investigation.14 and 15 Inhibition of the intracortical bone remodeling in the mandible of mice taking BPs has been reported.16 Thus, imaging evaluation of the mandibular cortical bone could be a biologically plausible way to detect BP bone alterations. Computed tomography can assess both cortical and trabecular bone characteristics. Cone-beam computed tomography (CBCT) can provide 3-dimensional information, while using lower doses and costing less than conventional CT. The CBCT images have been studied as a tool for the measurement of trabecular bone in patients with BRONJ.13 Therefore, cortical bone measurements on CBCT of the jaws might also help to understand bone changes in patients with BRONJ. There is no standard in quantifying dimensional changes of mandibular cortical bone. We explored several different approaches to take into consideration possible changes in length, area, and volume. These led to the 3 techniques developed in this study. This article reports a matched case-control study in which mandibular cortical bone was measured on CBCT images of subjects with BRONJ and controls. The aim of the study was to explore the usefulness of 3 techniques for detecting mandibular cortical bone dimensional changes caused by BP.