87 resultados para Human Action
Resumo:
Polyphenols are present in foods and beverages and are related to sensorial qualities such as color, bitterness, and astringency, which are relevant in wine, tea, grape juice, and other products. These compounds occur naturally in forms varying from simple phenolic acids to complex polymerized tannins. Thus, it is reasonable to expect that grape-derived products elaborated in the presence of skins and seeds, such as wine and grape juice, are natural sources of flavonoids in the diet. Carcinogenesis is a multistep process that is characterized by genetic, epigenetic, and phenotypic changes. With increasing knowledge of these mechanisms, and the conclusion that most cases of cancer are preventable, efforts have focused on identifying the agents with potential anticancer properties. The use of grape polyphenols against the carcinogenesis process seems to be a suitable alternative for either prevention and/or therapeutic purposes. The aim of this article is to show the molecular data generated from the use of grape polyphenols against carcinogenesis using in vivo and in vitro test systems. © Mary Ann Liebert, Inc. and Korean Society of Food Science and Nutrition.
Resumo:
Osteosarcoma (OSA) is a primary bone neoplasm frequently diagnosed in dogs. The biology of OSA in pet dogs is identical to that of pediatric patients, and it has been considered an excellent model in vivo to study human OSA. Since the individual response to chemotherapy is unpredictable and considering that propolis is a natural product with several biological properties, this work evaluated the cytotoxic action of propolis on canine OSA cells. The primary cell culture of canine OSA was obtained from the tumor of a dog with OSA. Cell viability was assessed after incubation with propolis, 70% ethanol (propolis solvent), and carboplatin after 6, 24, 48, and 72 h. Cell viability was analyzed by the crystal violet method. Data showed that canine OSA cells were sensitive to propolis in a dose- and time-dependent manner and had a distinct morphology compared to control. Its solvent (70% ethanol) had no effect on cell viability, suggesting that the cytotoxic action was exclusively due to propolis. Our propolis sample exerted a cytotoxic effect on canine OSA cells, and its introduction as a possible therapeutic agent in vivo could be investigated, providing a new contribution to OSA treatment. Copyright © 2012 John Wiley & Sons, Ltd.
Resumo:
The present study evaluated the efficacy of fluazuron (active ingredient of the acaricide Acatak®) and its effects on Rhipicephalus sanguineus nymphs fed on rabbits exposed to different doses of this insect growth regulator. Three different doses of fluazuron (20 mg/kg, 40 mg/kg, and 80 mg/kg) were applied on the back of hosts (via pour on), while distilled water was applied to the Control group. On the first day of treatment with fluazuron (24 h), hosts were artificially infested with R. sanguineus nymphs. Once fully engorged, nymphs were removed and placed in identified Petri dishes in Biochemical Oxygen Demand (BOD) incubator for 7 days. After this period, engorged nymphs were processed for ultramorphological analysis. The results revealed alterations in the ultramorphology of many chitinous structures (smaller hypostome and chelicerae, less sclerotized scutum, fewer sensilla, fewer pores, absence of grooves, marginal and cervical strips and festoons in the body, even the anal plaque was damaged) that play essential roles for the survivor of ticks and that can compromise the total or partial development of nymphs and emergence of adults after periodic molting. Our findings confirm the efficacy of fluazuron, a more specific and less aggressive chemical to the environment and human health, and that does not induce resistance, in nymphs of the tick R. sanguineus in artificially infested rabbits treated with this arthropod growth regulator (AGR), indicating that it could be used in the control of this stage of the biological cycle of the tick R. sanguineus. © 2013 Wiley Periodicals, Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
ObjectivesIn traditional medicine, plants have formed the basis of sophisticated systems that have been in existence for thousands of years and still provide mankind with new remedies. Cymbopogon martinii, known as palmarosa, has been used in aromatherapy as a skin tonic due to its antimicrobial properties. It has also used in Ayurvedic medicine for skin problems and to relieve nerve pain. The immunomodulatory action of C.martinii essential oil (EO) and geraniol was evaluated regarding the production of pro- and anti-inflammatory cytokines (tumour necrosis factor (TNF)- and IL-10, respectively) by human monocytes in vitro.MethodsMonocyte cultures were incubated with EO or geraniol. After 18h, cytotoxicity assays were performed using 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide method, and cytokine production was determined by ELISA.Key findingsThe variables showed no cytotoxic effects on monocytes. TNF- production was not affected by C.martinii and geraniol, and only the concentration of 5g/ml of C.martinii stimulated its production. On the other hand, all concentrations of C.martinii and geraniol increased IL-10 production by human monocytes.ConclusionsData showed that noncytotoxic concentrations of EO and geraniol exerted an anti-inflammatory action by increasing IL-10 production; moreover, geraniol seemed to be probably responsible for EO immunomodulatory activity in our assay condition.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Given that the auditory system is rather well developed at the end of the third trimester of pregnancy, it is likely that couplings between acoustics and motor activity can be integrated as early as at the beginning of postnatal life. The aim of the present mini-review was to summarize and discuss studies on early auditory-motor integration, focusing particularly on upper-limb movements (one of the most crucial means to interact with the environment) in association with auditory stimuli, to develop further understanding of their significance with regard to early infant development. Many studies have investigated the relationship between various infant behaviors (e.g., sucking, visual fixation, head turning) and auditory stimuli, and established that human infants can be observed displaying couplings between action and environmental sensory stimulation already from just after birth, clearly indicating a propensity for intentional behavior. Surprisingly few studies, however, have investigated the associations between upper-limb movements and different auditory stimuli in newborns and young infants, infants born at risk for developmental disorders/delays in particular. Findings from studies of early auditory-motor interaction support that the developing integration of sensory and motor systems is a fundamental part of the process guiding the development of goal-directed action in infancy, of great importance for continued motor, perceptual, and cognitive development. At-risk infants (e.g., those born preterm) may display increasing central auditory processing disorders, negatively affecting early sensorymotor integration, and resulting in long-term consequences on gesturing, language development, and social communication. Consequently, there is a need for more studies on such implications.
Resumo:
Ideally projected to be applied on soft tissues, infrared lasers were improved by restorative dentistry to be used in hard dental tissues cavity preparations-namely enamel and dentin. This paper evidentiates the relevant aspects of infrared Erbium laser's action mechanism and its effects, and characterizes the different effects deriving from the laser's beams emission. The criteria for use and selection of optimal parameters for the correct application of laser systems and infuence of supporting factors on the process, such as water amount and its presence in the ablation process, protection exerted by the plasma shielding and structural factors, which are indispensable in dental tissues cavity preparation related to restorative technique, are subordinated to optical modifcations caused by the interaction of the energy dissipated by these laser light emission systems in the targeted tissue substrate. Clinical relevance: Differences in the action of infrared Erbium laser system in regard to the nature of the ablation process and variations on the morphological aspects observed in the super-fcial structure of the target tissue irradiated, may be correlated to the structural optical modifcations of the substrate produced by an interaction of the energy propagated by laser systems.
Resumo:
Modeling is a step to perform a finite element analysis. Different methods of model construction are reported in literature, as the Bio-CAD modeling. The purpose of this study was to perform a model evaluation and application using two methods of Bio-CAD modeling from human edentulous hemi-mandible on the finite element analysis. From CT scans of dried human skull was reconstructed a stereolithographic model. Two methods of modeling were performed: STL conversion approach (Model 1) associated to STL simplification and reverse engineering approach (Model 2). For finite element analysis was used the action of lateral pterygoid muscle as loading condition to assess total displacement (D), equivalent von-Mises stress (VM) and maximum principal stress (MP). Two models presented differences on the geometry regarding surface number (1834 (model 1); 282 (model 2)). Were observed differences in finite element mesh regarding element number (30428 nodes/16683 elements (model 1); 15801 nodes/8410 elements (model 2). D, VM and MP stress areas presented similar distribution in two models. The values were different regarding maximum and minimum values of D (ranging 0-0.511 mm (model 1) and 0-0.544 mm (model 2), VM stress (6.36E-04-11.4 MPa (model 1) and 2.15E-04-14.7 MPa (model 2) and MP stress (-1.43-9.14 MPa (model 1) and -1.2-11.6 MPa (model 2). From two methods of Bio-CAD modeling, the reverse engineering presented better anatomical representation compared to the STL conversion approach. The models presented differences in the finite element mesh, total displacement and stress distribution.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Polyphenols represent a group of chemical substances common in plants, structurally characterized by the presence of one or more phenol units. Polyphenols are the most abundant antioxidants in human diets and the largest and best studied class of polyphenols is flavonoids, which include several thousand compounds. Numerous studies confirm that they exert a protective action on human health and are key components of a healthy and balanced diet. Epidemiological studies correlate flavonoid intake with a reduced incidence of chronic diseases, such as cardiovascular disease, diabetes and cancer. The involvement of reactive oxygen species (ROS) in the etiology of these degenerative conditions has suggested that phytochemicals showing antioxidant activity may contribute to the prevention of these pathologies. The present review deals with phenolic compounds in plants and reports on recent studies. Moreover, the present work includes information on the relationships between the consumption of these compounds, via feeding, and risk of disease occurrence, i.e. the effect on human health. Results obtained on herbs, essential oils, from plants grown in tropical, subtropical and temperate regions, were also reported.