104 resultados para HOT QCD


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Física - IFT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Física - IFT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A possible way for increasing the cutting tool life can be achieved by heating the workpiece in order to diminish the shear stress of material and thus decrease the machining forces. In this study, quartz electrical resistances were set around the workpiece for heating it during the turning. In the tests, heat-resistant austenitic alloy steel was used, hardenable by precipitation, mainly used in combustion engine exhaustion valves, among other special applications for industry. The results showed that in the hot machining the cutting tool life can be increased by 340% for the highest cutting speed tested and had a reduction of 205% on workpiece surface roughness, accompanied by a force decrease in relation to conventional turning. In addition, the chips formed in hot turning exhibited a stronger tendency to continuous chip formation indicating less energy spent in material removal process. Microhardness tests performed in the workpieces subsurface layers at 5 m depth revealed slightly higher values in the hot machining than in conventional, showing a tendency toward the formation of compressive residual stress into plastically deformed layer. The hot turning also showed better performance than machining using cutting fluid. Since it is possible to avoid the use of cutting fluid, this machining method can be considered better for the environment and for the human health.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil CO2 efflux is the primary source of CO2 emissions from terrestrial ecosystems to the atmosphere. The rates of this flux vary in time and space producing hot moments (sudden temporal high fluxes) and hot spots (spatially defined high fluxes), but these high reaction rates are rarely studied in conjunction with each other. We studied temporal and spatial variation of soil CO2 efflux in a water-limited Mediterranean ecosystem in Baja California, Mexico. Soil CO2 efflux increased 522% during a hot moment after rewetting of soils following dry summer months. Monthly precipitation was the primary driver of the seasonal trend of soil CO2 efflux (including the hot moment) and through changes in soil volumetric water content (VWC) it influenced the relationship between CO2 efflux and soil temperature. Geostatistical analyses showed that the spatial dependence of soil CO2 efflux changed between two contrasting seasons (dry and wet). During the dry season high soil VWC was associated with high soil CO2 efflux, and during the wet season the emergence of a hot spot of soil CO2 efflux was associated with higher root biomass and leaf area index. These results suggest that sampling designs should accommodate for changes in spatial dependence of measured variables. The spatio-temporal relationships identified in this study are arguably different from temperate ecosystems where the majority of soil CO2 efflux research has been done. This study provides evidence of the complexity of the mechanisms controlling the spatio-temporal variability of soil CO2 efflux in water-limited ecosystems. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The properties of the hot melt adhesive pressure sensitive (HMPSA) using an elastomer as a base polymer a copolymer of styrene and butadiene (SBS) and variation of tackifiers resins such as hydrocarbon resins and hydrogenated hydrocarbon were investigated. The formulations were prepared by mixing process within shear. The adhesives prepared were evaluated in test Brookfield viscosity and softening point Ring and Ball to compare the formulations and the influence of variations in raw materials. Infrared analyzes were performed to detect the reactions between the inputs and investigate the chemical interactions of the same properties of the adhesive. In thermal analysis, the assay was performed thermogravimetry (TG) and diferencial exploratory calorimetry (DSC). Were investigated the parameters of the tensile test on each of the formulations. Finally, were analysed comparatively the basic formulations of adhesives with their respective raw materials

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We set up sum rules for heavy lambda decays in a full QCD calculation which in the heavy quark mass limit incorporates the symmetries of heavy quark effective theory. For the semileptonic Λc decay we obtain a reasonable agreement with experiment. For the Λb semileptonic decay we find at the zero recoil point a violation of the heavy quark symmetry of about 20%. © 1998 Published by Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we calculate the form factors of the Lambda(c) and Lambda(b) semileptonic decay using the QCD sum rules approach. We found that the form factors sum rules are more stable than the respective mass sum rules, and we get a decay rate for Lambda(c) compatible with experiment.