122 resultados para HEO line
Resumo:
The application of on-line C30-reversed-phase high-pressure liquid chromatography-nuclear magnetic resonance spectroscopy is described for the analysis of tetraglycosylated flavonoids in aqueous and hydroalcoholic extracts of the leaves of Maytenus aquifolium (Celastraceae). Triacontyl stationary phases showed adequate separation for on-line 1H-NMR measurements at 600 MHz and allowed the characterisation of these flavonoids by detection of both aromatic and anomeric proton signals. Copyright (C) 2000 John Wiley and Sons, Ltd.
Resumo:
Here we present two-phase flow nonlinear parameter estimation for HFC's flow through capillary tube-suction line heat exchangers, commonly used as expansion devices in small refrigeration systems. The simplifying assumptions adopted are: steady state, pure refrigerant, one-dimensional flow, negligible axial heat conduction in the fluid, capillary tube and suction line walls. Additionally, it is considered that the refrigerant is free from oil and both phases are assumed to be at the same pressure, that is, surface tension effects are neglected. Metastable flow effects are also disregarded, and the vapor is assumed to be saturated at the local pressure. The so-called homogeneous model, involving three, first order, ordinary differential equations is applied to analyze the two-phase flow region. Comparison is done with experimental measurements of the mass flow rate and temperature distribution along capillary tubes working with refrigerant HFC-134a in different operating conditions.
Resumo:
A rapid and sensitive method was developed to determine trace levels of Cd2+ ions in an aqueous medium by flame atomic absorption spectrometry, using on-line preconcentration in a mini-column packed with 100 mg of 2-aminothiazol modified silica gel (SiAT). The Cd2+ ions were sorbed at pH 5.0. The preconcentrated Cd2+ ions were directly eluted from the column to the spectrometer's nebulizer-burner system using 100 μL of 2 mol L-1 hydrochloric acid. A retention efficiency of over 95% was achieved. The enrichment factor (calculated as the ratio of slopes of the calibration graphs) obtained with preconcentrations in a mini-column packed with SiAT (A = -1.3 × 10-3 + 1.8 × 10-3 [Cd2+]) and without preconcentrations (A = 4 × 10-5 + 3.5 × 10-3[Cd2+]), was 51 and the detection limit calculated was 0.38 μg L-1. The preconcentration procedure was applied to determine trace levels of Cd in river water samples. The optimum preconcentration conditions are discussed herein.
Resumo:
Three-phase three-wire power flow algorithms, as any tool for power systems analysis, require reliable impedances and models in order to obtain accurate results. Kron's reduction procedure, which embeds neutral wire influence into phase wires, has shown good results when three-phase three-wire power flow algorithms based on current summation method were used. However, Kron's reduction can harm reliabilities of some algorithms whose iterative processes need loss calculation (power summation method). In this work, three three-phase three-wire power flow algorithms based on power summation method, will be compared with a three-phase four-wire approach based on backward-forward technique and current summation. Two four-wire unbalanced medium-voltage distribution networks will be analyzed and results will be presented and discussed. © 2004 IEEE.
Resumo:
The objective of this paper is to show an alternative methodology to calculate transmission line parameters per unit length. With this methodology the transmission line parameters can be obtained starting from the phase currents and voltages in one terminal of the line. First, the article shows the classical methodology to calculate frequency dependent transmission line parameters by using Carson's and Pollaczeck's equations for representing the ground effect and Bessel's functions to represent the skin effect. After that, it is shown a new procedure to calculate frequency dependent transmission line parameters directly from currents and voltages of the line that is already built. Then, this procedure is applied in a two-phase transmission line whose parameters have been previously calculated by using the classical methodology. Finally, the results obtained by using the new procedure and by using the classical methodology are compared. ©2005 IEEE.
Resumo:
In transmission line transient analyses, a single real transformation matrix can obtain exact modes when the analyzed line is transposed. For non-transposed lines, the results are not exact. In this paper, non-symmetrical and non transposed three-phase line samples are analyzed with a single real transformation matrix application (Clarke's matrix). Some interesting characteristics of this matrix application are: single, real, frequency independent, line parameter independent, identical for voltage and current determination. With Clarke's matrix use, mathematical simplifications are obtained and the developed model can be applied directly in programs based on time domain. This model works without convolution procedures to deal with phase-mode transformation. In EMTP programs, Clarke's matrix can be represented by ideal transformers and the frequency dependent line parameters can be represented by modified-circuits. With these representations, the electrical values at any line point can be accessed for phase domain or mode domain using the Clarke matrix or its inverse matrix. For symmetrical and non-transposed lines, the model originates quite small errors. In addition, the application of the proposed model to the non-symmetrical and non-transposed three phase transmission lines is investigated. ©2005 IEEE.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Objective: The aim of this in vitro study was to evaluate the cytotoxicity of resin-modified glass-ionomer lining cements submitted to different curing regimes and applied to an immortalized odontoblast-cell line (MDPC-23). Methods: Forty round-shaped specimens of each experimental material (Fuji Lining LC and Vitrebond) were prepared. They were light-cured for the manufacturers' recommended time (MRT = 30 s), under-cured (0.5 MRT = 15 s), over-cured (1.5 MRT = 45 s) or allowed to dark cure (0 MRT). Sterilized filter papers soaked with either 5 μL of PBS or HEMA were used as negative and positive control, respectively. After placing the specimens individually in wells of 24-well dishes, odontoblast-like cells MDPC-23 (30,000 cells/cm2) were plated in each well and incubated for 72 h in a humidified incubator at 37 °C with 5% CO2 and 95% air. The cytotoxicity was evaluated by the cell metabolism (MTT assay) and cell morphology (SEM). Results: Fuji Lining LC was less cytotoxic than Vitrebond (p < 0.05) in all the experimental conditions. However, the cytotoxicity of Fuji Lining LC was noticeably increased in the absence of light-curing while the same was not observed for Vitrebond. The length of light-curing (15, 30 or 45 s) did not influence the toxicity of both lining materials when they were applied on the odontoblast-cell line MDPC-23. Significance: The light-activation plays an important role in reducing the cytotoxicity of Fuji Lining LC. Following the manufacturer' recommendation regarding the light-curing regime may prevent toxic effect to the pulp cells. © 2005 Academy of Dental Materials.
Resumo:
The objective of this paper is to show an alternative methodology to estimate per unit length parameters of a line segment of a transmission line. With this methodology the line segment parameters can be obtained starting from the phase currents and voltages in receiving and sending end of the line segment. If the line segment is represented as being one or more π circuits whose frequency dependent parameters are considered lumped, its impedance and admittance can be easily expressed as functions of the currents and voltages at the sending and receiving end. Because we are supposing that voltages and currents at the sending and receiving end of the line segment (in frequency domain) are known, it is possible to obtains its impedance and admittance and consequently its per unit length longitudinal and transversal parameters. The procedure will be applied to estimate the longitudinal and transversal parameters of a small segment of a single-phase line that is already built. © 2006 IEEE.
Resumo:
The paper shows an alternative methodology to calculate transmission line parameters per unit length and to apply it in a three-phase line with a vertical symmetry plane. This procedure is derived from a general procedure where the modal transformation matrix of the line is required. In this paper, the unknown modal transformation matrix requested by general procedure is substituted by Clarke's matrix. With the substitution that is shown in the paper, the transmission line parameters can be obtained starting from impedances measured in one terminal of the line. First, the article shows the classical methodology to calculate frequency dependent transmission line parameters by using Carson and Pollaczeck's equations for representing the ground effect and Bessel's functions to represent the skin effect. After that, a new procedure is shown to calculate frequency dependent transmission line parameters directly from currents and voltages of an existing line. Then, this procedure is applied in a non-transposed three-phase transmission line whose parameters have been previously calculated by using the classical methodology. Finally, the results obtained by using the new procedure and by using the classical methodology are compared. The article shows simulation results for typical frequency spectra of switching transients (10 Hz to 10 kHz). Results have shown that procedure has © 2006 IEEE.
Resumo:
Clarke's matrix has been used as an eigenvector matrix for transposed three-phase transmission lines and it can be applied as a phase-mode transformation matrix for transposed cases. Considering untransposed three-phase transmission lines, Clarke's matrix is not an exact eigenvector matrix. In this case, the errors related to the diagonal elements of the Z and Y matrices can be considered negligible, if these diagonal elements are compared to the exact elements in domain mode. The mentioned comparisons are performed based on the error and frequency scan analyses. From these analyses and considering untransposed asymmetrical three-phase transmission lines, a correction procedure is determined searching for better results from the Clarke's matrix use as a phase-mode transformation matrix. Using the Clarke's matrix, the relative errors of the eigenvalue matrix elements can be considered negligible and the relative values of the off-diagonal elements are significant. Applying the corrected transformation matrices, the relative values of the off-diagonal elements are decreased. The comparisons among the results of these analyses show that the homopolar mode is more sensitive to the frequency influence than the two other modes related to three-phase lines. © 2006 IEEE.
Resumo:
This paper proposes a dedicated algorithm for lation of single line-to-ground faults in distribution systems. The proposed algorithm uses voltage and current phasors measured at the substation level, voltage magnitudes measured at some buses of the feeder, a database containing electrical, operational and topological parameters of the distribution networks, and fault simulation. Voltage measurements can be obtained using power quality devices already installed on the feeders or using voltage measurement devices dedicated for fault location. Using the proposed algorithm, likely faulted points that are located on feeder laterals geographically far from the actual faulted point are excluded from the results. Assessment of the algorithm efficiency was carried out using a 238 buses real-life distribution feeder. The results show that the proposed algorithm is robust for performing fast and efficient fault location for sustained single line-to-ground faults requiring less than 5% of the feeder buses to be covered by voltage measurement devices. © 2006 IEEE.
Resumo:
Objective: The present study evaluated the cytotoxic effects of hard setting applied on the odontoblastlike cells MDPC-23. Study design: Eighty round-shaped samples were prepared with the following experimental materials: calcium hydroxide, Vitrebond, RelyX Luting, and RelyX Unicem. The samples were placed in serum-free culture medium and incubated for 24 hours or 7 days at 37°C with 5% CO 2 and 95% air. The odontoblast cells were plated in the wells and incubated for 72 hours. After this period, the complete culture medium was replaced by the extracts obtained from every sample, and the methyltetrazolium assay was carried out to evaluate the cell metabolism. Results: For the 24-hour period, the experimental materials calcium hydroxide, Vitrebond, RelyX Luting, and RelyX Unicem decreased the cell metabolic activity by 91.52%, 81.14%, 78.17%, and 2.64%, respectively. For the 7-day period, calcium hydroxide, Vitrebond, RelyX Luting, and RelyX Unicem decreased the metabolic activity of the MDPC-23 cells by 91.13%, 87.27%, 79.04%, and 10.51%, respectively. Conclusion: RelyX Unicem presented the lowest cytopathic effects to the cultured odontoblast cell line. © 2007 Mosby, Inc. All rights reserved.
Resumo:
The inclusion of the corona effect in a frequency dependent transmission line model is proposed in this paper. The transmission line is represented through a cascade of π circuits and the frequency dependence of the longitudinal parameters is synthesized with series and parallel resistors and inductors. The corona effect will be represented using the Gary and Skilling-Umoto models. The currents and voltages along the line are calculated by using state-space technique. To demonstrate the accuracy and validity of the proposed frequency dependent line model, time domain simulations of a 10 km length single-phase line response under energization procedure will be presented. ©2008 IEEE.
Resumo:
Purpose: Symmetry is one of the factors that contributes to facial harmony, and in oral rehabilitation it determines the success of esthetic treatment. Therefore, the aim of the present study was to analyze the axial symmetry between the bipupillar midline and maxillary central incisors midline of 102 dental students (both genders) distributed across five Brazilian dental schools. Materials and Methods: Students with no teeth missing and who had never been subjected to any dental treatment were selected. Photographs were taken with a Dental Eye III camera with a 100-mm macro objective and ratio of 1 : 10 from natural size, recorded on an Ektachrome ASA/ISO 100 film. The images were developed and applied to Microsoft Office Power Point 2007 software. The results were analyzed by analysis of variance and Student's t-test (= 0.05). Results: There was no significant correlation between bipupillar midline and the maxillary dental midline, irrespective of gender. Conclusion: No significant coincidence was observed between the interpupillary and dental midline. However, the interpupillar distance and its relationship with other anatomic structures may be used as a reference in treatment, but measurements must be assessed individually. CLINICAL SIGNIFICANCE Anatomic measurements and facial proportions can be helpful during the planning of esthetic oral rehabilitation. © 2009 Wiley Periodicals, Inc.