174 resultados para Genetic group model


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In a machine milking system in which calves were not present, oxytocin concentration (OT), cortisol release (CORT), milk yield and residual milk were evaluated for cows of three genetic groups: 1/2Gir x 1/2Holstein (n=6, genetic group F2), 1/4Gir x 3/4Holstein (n=6, genetic group F3) and Holstein (n=6, genetic group H). Group H had higher milk yield than groups F2 and F3, whereas OT was similar among groups. The increase in OT during milk-ing was greater for H and F3 than for F2. Residual milk for F2 was' higher than for F3 and H. The CORT for F2 was higher than for cows of the other two genetic groups. Cows from F2 and F3 were more stressed than H cows during machine milking, but the Gir x Holstein groups did release suffficient OT to induce an effective milk letdown response.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objective was to evaluate the effects of genetic group and age on growth, carcass, and meat traits of rabbits. A total of 144 straightbred Botucatu and White German Giant x Botucatu crossbred rabbits were involved. Rabbits were weaned at 35 d and sequentially, slaughtered, four per genetic group x sex combination, at: 42, 49, 56, 63, 70, 77, 84 and 91 d. A 2x2 factorial arrangement was employed in a completely randomized design with repeated measures for growth traits, and a split-plot for carcass and meat traits. Crossbred rabbits were heavier (2032 vs. 1962 g; P < 0.01), consumed more feed (143.5 vs. 131.0 g/d; P < 0.01), and presented higher slaughter weight (2169 vs. 2093 g, P=0.02) and dressing percentage (59.0 vs. 58.2%; P=0.07) than straightbreds throughout the experiment. No difference between genetic groups was detected for feed conversion and empty gastrointestinal weight corrected for slaughter weight (SW). Crossbreds showed higher skin weight (308.2 vs. 299.7 g, P = 0.06) and distal parts of leg weight (75.7 vs. 71.4 g; P < 0.01), both corrected for SW. No genetic group effect was detected on dissectible fat and hind part weights. Chilled commercial carcass (1284 vs. 1229 g: P=0.02), chilled reference carcass (1036 vs. 1000 g, P=0.06), fore part (297.9 vs. 283.3 g; P=0.01) and loin (308.7 vs. 295.5 g; P=0.05) were heavier in crossbreds than in straightbreds, but these differences were attributed to differences in SW. Uncorrected weights of head, kidneys, liver and thoracic viscera were higher in the crossbred group, but only head (116.6 vs. 113.6 g; P=0.06) and thoracic viscera (30.4 vs. 28.6 g; P=0.01) were, in fact, proportionately heavier in crossbreds than in straightbreds. No effect of genetic group was detected on meat to bone ratio, muscle ultimate pH and chemical composition of the Longissimus dorsi muscle. All traits, except for ash and fat contents of the Longissimus muscle, showed age effects (P < 0.01). Crossbreeding may be recommended for the production of whole commercial carcasses, but it is not clearly advantageous for the production of retail cuts. Slaughter should take place between 63 and 70 d of age for both genetic groups.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bos indicus cattle, the preferred genetic group in tropical climates, are characterized by having a lower reproductive efficiency than Bos taurus. The reasons for the poorer reproductive efficiency of the Bos indicus cows include longer lengths of gestation and postpartum anestrus, a short length of estrous behavior with a high incidence of estrus occurring during the dark hours, and puberty at older age and at a higher percentage of body weight relative to mature body weight. Moreover, geography, environment, economics, and social traditions are factors contributing for a lower use of reproductive biotechnologies in tropical environments. Hormonal protocols have been developed to resolve some of the reproductive challenges of the Bos indicus cattle and allow artificial insemination, which is the main strategy to hasten genetic improvement in commercial beef ranches. Most of these treatments use exogenous sources of progesterone associated with strategies to improve the final maturation of the dominant follicle, such as temporary weaning and exogenous gonadotropins. These treatments have caused large impacts on reproductive performance of beef cattle reared under tropical areas. Copyright © 2011 O. G. Sá Filho and J. L. M. Vasconcelos.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: The sequencing and publication of the cattle genome and the identification of single nucleotide polymorphism (SNP) molecular markers have provided new tools for animal genetic evaluation and genomic-enhanced selection. These new tools aim to increase the accuracy and scope of selection while decreasing generation interval. The objective of this study was to evaluate the enhancement of accuracy caused by the use of genomic information (Clarifide® - Pfizer) on genetic evaluation of Brazilian Nellore cattle. Review: The application of genome-wide association studies (GWAS) is recognized as one of the most practical approaches to modern genetic improvement. Genomic selection is perhaps most suited to the improvement of traits with low heritability in zebu cattle. The primary interest in livestock genomics has been to estimate the effects of all the markers on the chip, conduct cross-validation to determine accuracy, and apply the resulting information in GWAS either alone [9] or in combination with bull test and pedigree-based genetic evaluation data. The cost of SNP50K genotyping however limits the commercial application of GWAS based on all the SNPs on the chip. However, reasonable predictability and accuracy can be achieved in GWAS by using an assay that contains an optimally selected predictive subset of markers, as opposed to all the SNPs on the chip. The best way to integrate genomic information into genetic improvement programs is to have it included in traditional genetic evaluations. This approach combines traditional expected progeny differences based on phenotype and pedigree with the genomic breeding values based on the markers. Including the different sources of information into a multiple trait genetic evaluation model, for within breed dairy cattle selection, is working with excellent results. However, given the wide genetic diversity of zebu breeds, the high-density panel used for genomic selection in dairy cattle (Ilumina Bovine SNP50 array) appears insufficient for across-breed genomic predictions and selection in beef cattle. Today there is only one breed-specific targeted SNP panel and genomic predictions developed using animals across the entire population of the Nellore breed (www.pfizersaudeanimal.com), which enables genomically - enhanced selection. Genomic profiles are a way to enhance our current selection tools to achieve more accurate predictions for younger animals. Material and Methods: We analyzed the age at first calving (AFC), accumulated productivity (ACP), stayability (STAY) and heifer pregnancy at 30 months (HP30) in Nellore cattle fitting two different animal models; 1) a traditional single trait model, and 2) a two-trait model where the genomic breeding value or molecular value prediction (MVP) was included as a correlated trait. All mixed model analyses were performed using the statistical software ASREML 3.0. Results: Genetic correlation estimates between AFC, ACP, STAY, HP30 and respective MVPs ranged from 0.29 to 0.46. Results also showed an increase of 56%, 36%, 62% and 19% in estimated accuracy of AFC, ACP, STAY and HP30 when MVP information was included in the animal model. Conclusion: Depending upon the trait, integration of MVP information into genetic evaluation resulted in increased accuracy of 19% to 62% as compared to accuracy from traditional genetic evaluation. GE-EPD will be an effective tool to enable faster genetic improvement through more dependable selection of young animals.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objective of this work was to evaluate deposition pattems of body tissues of Nellore and crossbreed with Angus and Simmental heifers. Fifty seven heifers (19 Nellore, 19 Angus and 19 Simmental) were used, being 12 heifers (four in each genetic group) slaughtered before the beginning of the experiment as the baseline group. Thirty six (twelve in each genetic group) were ad libitun fed with 30 (six in each group) and 50% (six in each group) of dry matter diet in concentrate. The animals were in a completely randomized design, 3x2 factorial (tree genetic group and two diet), with six replicates per treatment. Nine remaining animals were used for a digestibility trial. At the end of the experiment all these animals were slaughtered and its corporal composition determined. The percentage of subcutaneous fat was greater for Angus heifers. Chemical constituents of empty body weight and empty body gain there did not suffer effects of genetic group. The crossing between Nellore and Angus, as well as the level of concentrate improve carcass characteristics and pattern of deposition of body tissues.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Rabbits are very sensitive to heat stress because they have difficulty eliminating excess body heat. The objective of the current study was to evaluate the effects of heat stress on slaughter weight, dressing percentage and carcass and meat quality traits of rabbits from two genetic groups. Ninety-six weaned rabbits were used: half were from the Botucatu genetic group and half were crossbreds between New Zealand White sires and Botucatu does. They were assigned to a completely randomized design in a 2 × 3 factorial arrangement (two genetic groups and three ambient temperatures: 18°C, 25°C and 30°C) and kept under controlled conditions in three environmental chambers from 5 to 10 weeks of age. Slaughter took place at 10 weeks, on 2 consecutive days. Meat quality measurements were made in the longissimus muscle. Actual average ambient temperature and relative humidity in the three chambers were 18.4°C and 63.9%, 24.4°C and 80.2% and 29.6°C and 75.9%, respectively. Purebred rabbits were heavier at slaughter and had heavier commercial and reference carcasses than crossbreds at 30°C; however, no differences between genetic groups for these traits were found at lower temperatures. No genetic group × ambient temperature interaction was detected for any other carcass or meat quality traits. The percentages of distal parts of legs, skin and carcass forepart were higher in crossbred rabbits, indicating a lower degree of maturity at slaughter in this group. The percentage of thoracic viscera was higher in the purebreds. Lightness of the longissimus muscle was higher in the purebreds, whereas redness was higher in the crossbreds. Slaughter, commercial and reference carcass weights and the percentages of thoracic viscera, liver and kidneys were negatively related with ambient temperature. Commercial and reference carcass yields, and the percentage of distal parts of legs, on the other hand, had a positive linear relationship with ambient temperature. Meat redness and yellowness diminished as ambient temperature increased, whereas cooking loss was linearly elevated with ambient temperature. Meat color traits revealed paler meat in the purebreds, but no differences in instrumental texture properties and water-holding capacity between genetic groups. Purebred rabbits were less susceptible to heat stress than the crossbreds. Heat stress resulted in lower slaughter and carcass weights and proportional reductions of organ weights, which contributed to a higher carcass yield. Moreover, it exerted a small, but negative, effect on meat quality traits. © 2012 The Animal Consortium.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study was performed to compare CAPN1, CAPN2, CAST, TG, DGAT1 and LEP gene expressions and correlate them with meat quality traits in two genetic groups (Nellore and Canchim) in order to assess their expression profile and use their expression profile as genetic markers. We analyzed 30 young bulls (1. year old), 15 of each genetic group. Samples of the Longissimus dorsi muscle were collected for analysis of: total lipids (TL) and meat tenderness measured as Warner-Bratzler shear force (SF) and myofibrillar fragmentation (MFI) at day of slaughter and 7. days of aging. Gene expression profiles were obtained via RT-qPCR. TL and MFI showed differences between breeds, higher MFI in Canchim and higher TL in Nellore. Calpains showed no differential expression between groups, as did DGAT1, TG, and LEP. CAST was expressed more in the Nellore cattle. The only significant within-breed correlation (0.79) between gene expression and meat traits was found for DGAT1 and MFI in Canchim breed. Although the number of animals used in this study was small, the results indicate that the increased expression of CAST in Nellore may reflect tougher meat, but the lack of correlations with the meat traits indicates it is not a promising genetic marker. © 2013 Elsevier Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)