127 resultados para Generalized Gross Laplacian


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The generalized exponential distribution, proposed by Gupta and Kundu (1999), is a good alternative to standard lifetime distributions as exponential, Weibull or gamma. Several authors have considered the problem of Bayesian estimation of the parameters of generalized exponential distribution, assuming independent gamma priors and other informative priors. In this paper, we consider a Bayesian analysis of the generalized exponential distribution by assuming the conventional non-informative prior distributions, as Jeffreys and reference prior, to estimate the parameters. These priors are compared with independent gamma priors for both parameters. The comparison is carried out by examining the frequentist coverage probabilities of Bayesian credible intervals. We shown that maximal data information prior implies in an improper posterior distribution for the parameters of a generalized exponential distribution. It is also shown that the choice of a parameter of interest is very important for the reference prior. The different choices lead to different reference priors in this case. Numerical inference is illustrated for the parameters by considering data set of different sizes and using MCMC (Markov Chain Monte Carlo) methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We defined generalized Heaviside functions for a variable x in R-n, and for variables (x, t) in R-n x R-m. Then study properties such as: composition, invertibility, and association relation (the weak equality). This work is developed in the Colombeau generalized functions context.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that the wavefunctions 〈pq; λ|n〈, of the harmonic oscillator in the squeezed state representation, have the generalized Hermite polynomials as their natural orthogonal polynomials. These wavefunctions lead to generalized Poisson Distribution Pn(pq;λ), which satisfy an interesting pseudo-diffusion equation: ∂Pnp,q;λ) ∂λ= 1 4 [ ∂2 ∂p2-( 1 λ2) ∂2 ∂q2]P2(p,q;λ), in which the squeeze parameter λ plays the role of time. Th entropies Sn(λ) have minima at the unsqueezed states (λ=1), which means that squeezing or stretching decreases the correlation between momentum p and position q. © 1992.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Invariance under non-linear Ŵ∞ algebra is shown for the two-boson Liouville type of model and its algebraic generalizations, the extended conformal Toda models. The realization of the corresponding generators in terms of two boson currents within KP hierarchy is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We quantize a generalized version of the Schwinger model, where the two chiral sectors couples with different strengths to the U(1) gauge field. Starting from a theory which includes a generalized Wess-Zumino term, we obtain the equal time commutation relation for physical fields, both the singular and non-singular cases are considered. The photon propagators are also computed in their gauge dependent and invariant versions. © 1995 Springer-Verlag.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A time-dependent projection technique is used to treat the initial-value problem for self-interacting fermionic fields. On the basis of the general dynamics of the fields, we derive formal equations of kinetic-type for the set of one-body dynamical variables. A nonperturbative mean-field expansion can be written for these equations. We treat this expansion in lowest order, which corresponds to the Gaussian mean-field approximation, for a uniform system described by the chiral Gross-Neveu Hamiltonian. Standard stationary features of the model, such as dynamical mass generation due to chiral symmetry breaking and a phenomenon analogous to dimensional transmutation, are reobtained in this context. The mean-field time evolution of nonequilibrium initial states is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, Basseto and Griguolo1 did a perturbative quantization of what they called a generalized chiral Schwinger model. As a consequence of the kind of quantization adopted, some gauge-dependent masses raised in the model. On the other hand, we discussed the possibility of introducing a generalized Wess-Zumino term,2 where such gauge-dependent masses did appear. Here we intend to show that one can construct a non-anomalous version of a model which include that, presented by Basseto and Griguolo as a particular case, by adding to it a generalized Wess-Zumino term, as proposed in Ref. 2. So we conclude that it is possible to construct a gauge-invariant extension of the model quoted in Ref. 1, and this can be done through a Wess-Zumino term of the type proposed in Ref. 2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have compared the recently introduced generalized simulated annealing (GSA) with conventional simulated annealing (CSA). GSA was tested as a tool to obtain the ground-state geometry of molecules. We have used selected silicon clusters (Sin, n=4-7,10) as test cases. Total energies were calculated through tight-binding molecular dynamics. We have found that the replacement of Boltzmann statistics (CSA) by Tsallis's statistics (GSA) has the potential to speed up optimizations with no loss of accuracy. Next, we applied the GSA method to study the ground-state geometry of a 20-atom silicon cluster. We found an original geometry, apparently lower in energy than those previously described in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present paper, we discuss a generalized theory of electrical characteristics for amorphous semiconductor (or insulator) Schottky barriers, considering: (i) surface states, (ii) doping impurity states at a single energy level and (iii) energetically distributed bulk impurity states. We also consider a thin oxide layer (≈10 Å) between metal and semiconductor. We develop current versus applied potential characteristics considering the variation of the Fermi level very close to contact inside the semiconductor and decrease in barrier height due to the image force effect as well as potential fall on the oxide layer. Finally, we discuss the importance of each parameter, i.e. surface states, distributed impurity states, doping impurity states, thickness of oxide layer etc. on the log I versus applied potential characteristics. The present theory is also applicable for intimate contact, i.e. metal-semiconductor contact, crystalline material structures or for Schottky barriers in insulators or polymers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We give the correct prescriptions for the terms involving ∂ -1 xδ(x - y), in the Hamiltonian structures of the AKNS and DNLS systems, necessary for the Jacobi identities to hold. We establish that the sl(2) and sl(3) AKNS systems are tri-Hamiltonians and construct two compatible Hamiltonian structures for the sl(n) AKNS system. We give a method for the derivation of the recursion operator for the sl(n + 1) DNLS system, and apply it explicitly to the sl(2) case, showing that such a system is tri-Hamiltonian. © 1998 Elsevier Science B.V.