103 resultados para Generalized Additive Models
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Com este trabalho objetivou-se determinar parâmetros genéticos para peso corporal de perdizes em cativeiro. Foram utilizados modelos de regressão aleatória na análise dos dados considerando os efeitos genéticos aditivos diretos (AD) e de ambiente permanente de animal (AP) como aleatórios. As variâncias residuais foram modeladas utilizando-se funções de variância de ordem 5. A curva média da população foi ajustada por polinômios ortogonais de Legendre de ordem 6. Os efeitos genéticos aditivos diretos e de ambiente permanente de animal foram modelados utilizando-se polinômios de Legendre de segunda a nona ordem. Os melhores resultados foram obtidos pelos modelos de ordem 6 de ajuste para os efeitos genéticos aditivos diretos e de ordem 3 para os de ambiente permanente pelo Critério de Informação de Akaike e ordem 3 para ambos os efeitos pelos Critério de Informação Bayesiano de Schwartz e Teste de Razão de Verossimilhança. As herdabilidades estimadas variaram de 0,02 a 0,57. O primeiro autovalor respondeu por 94 e 90% da variação decorrente de efeitos aditivos diretos e de ambiente permanente, respectivamente. A seleção de perdizes para peso corporal é mais efetiva a partir de 112 dias de idade.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
For the configuration optimization of plate heat exchangers (PHEs), the mathematical models for heat transfer and pressure drop must be valid for a wide range of operational conditions of all configurations of the exchanger or the design results may be compromised. In this investigation, the thermal model of a PHE is adjusted to fit experimental data obtained from non-Newtonian heat transfer for eight different configurations, using carboxymethylcellulose solutions (CMC) as test fluid. Although it is possible to successfully adjust the model parameters, Newtonian and non-Newtonian heat transfer cannot be represented by a single generalized correlation. In addition, the specific heat, thermal conductivity and power-law rheological parameters of CMC solutions were correlated with temperature, over a range compatible with a continuous pasteurization process.
Resumo:
Data comprising 1,719 milk yield records from 357 females (predominantly Murrah breed), daughters of 110 sires, with births from 1974 to 2004, obtained from the Programa de Melhoramento Genetic de Bubalinos (PROMEBUL) and from records of EMBRAPA Amazonia Oriental - EAO herd, located in Belem, Para, Brazil, were used to compare random regression models for estimating variance components and predicting breeding values of the sires. The data were analyzed by different models using the Legendre's polynomial functions from second to fourth orders. The random regression models included the effects of herd-year, month of parity date of the control; regression coefficients for age of females (in order to describe the fixed part of the lactation curve) and random regression coefficients related to the direct genetic and permanent environment effects. The comparisons among the models were based on the Akaike Infromation Criterion. The random effects regression model using third order Legendre's polynomials with four classes of the environmental effect were the one that best described the additive genetic variation in milk yield. The heritability estimates varied from 0.08 to 0.40. The genetic correlation between milk yields in younger ages was close to the unit, but in older ages it was low.
Resumo:
The objectives of this study were to estimate genetic parameters for test-day milk, fat and protein yields, in Murrah buffaloes. In this study 4,757 complete lactations of Murrah buffaloes were analyzed. The (co) variance components were estimated by restricted maximum likelihood using MTDFREML software. The bi-trait animal test-day models included genetic additive direct and permanent environment effects, as random effects, and the fixed effects of contemporary group (herds-year-month of control) and age of the cow at calving as linear and quadratic covariable. The heritability estimate at first control was 0.19, increased until the third control (0.24), decreasing thereafter, reaching the lowest value at the ninth control (0.09). The highest heritability estimates for fat and protein yield were 0.23 (first control) and 0.33 (third control), respectively. For milk yield, genetic and phenotypic correlation estimates ranged from 0.37 to 0.99 and from 0.52 to 0.94, respectively. Genetic correlations were higher than phenotypic ones. For fat and protein yields, genetic correlation estimates ranged from 0.42 to 0.97.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We formulate the constrained KP hierarchy (denoted by cKP K+1,M) as an affine sl(M + K+ 1) matrix integrable hierarchy generalizing the Drinfeld-Sokolov hierarchy. Using an algebraic approach, including the graded structure of the generalized Drinfeld-Sokolov hierarchy, we are able to find several new universal results valid for the cKP hierarchy. In particular, our method yields a closed expression for the second bracket obtained through Dirac reduction of any untwisted affine Kac-Moody current algebra. An explicit example is given for the case sl(M + K + 1), for which a closed expression for the general recursion operator is also obtained. We show how isospectral flows are characterized and grouped according to the semisimple non-regular element E of sl(M + K+ 1) and the content of the center of the kernel of E. © 1997 American Institute of Physics.
Resumo:
This paper describes a novel approach for mapping lightning models using artificial neural networks. The networks acts as identifier of structural features of the lightning models so that output parameters can be estimated and generalized from an input parameter set. Simulation examples are presented to validate the proposed approach. More specifically, the neural networks are used to compute electrical field intensity and critical disruptive voltage taking into account several atmospheric and structural factors, such as pressure, temperature, humidity, distance between phases, height of bus bars, and wave forms. A comparative analysis with other approaches is also provided to illustrate this new methodology.
Resumo:
In the present paper we introduce a hierarchical class of self-dual models in three dimensions, inspired in the original self-dual theory of Towsend-Pilch-Nieuwenhuizen. The basic strategy is to explore the powerful property of the duality transformations in order to generate a new field. The generalized propagator can be written in terms of the primitive one (first order), and also the respective order and disorder correlation functions. Some conclusions about the charge screening and magnetic flux were established. ©1999 The American Physical Society.
Resumo:
We introduce and study new integrable models (IMs) of An (1)-nonabelian Toda type which admit U(1) ⊗ U(1) charged topological solitons. They correspond to the symmetry breaking SU(n + 1) → SU(2) ⊗ SU(2) ⊗ U(1)n-2 and are conjectured to describe charged dyonic domain walls of N = 1 SU(n + 1) SUSY gauge theory in large n limit. It is shown that this family of relativistic IMs corresponds to the first negative grade q = -1 member of a dyonic hierarchy of generalized cKP type. The explicit relation between the 1-soliton solutions (and the conserved charges as well) of the IMs of grades q = -1 and q = 2 is found. The properties of the IMs corresponding to more general symmetry breaking SU(n + 1) → SU(2)⊗p ⊗ U(1)n-p as well as IM with global SU(2) symmetries are discussed. © 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Some properties of the higher grading integrable generalizations of the conformal affine Toda systems are studied. The fields associated to the non-zero grade generators are Dirac spinors. The effective action is written in terms of the Wess-Zumino-Novikov-Witten (WZNW) action associated to an affine Lie algebra, and an off-critical theory is obtained as the result of the spontaneous breakdown of the conformal symmetry. Moreover, the off-critical theory presents a remarkable equivalence between the Noether and topological currents of the model. Related to the off-critical model we define a real and local lagrangian provided some reality conditions are imposed on the fields of the model. This real action model is expected to describe the soliton sector of the original model, and turns out to be the master action from which we uncover the weak-strong phases described by (generalized) massive Thirring and sine-Gordon type models, respectively. The case of any (untwisted) affine Lie algebra furnished with the principal gradation is studied in some detail. The example of s^l(n) (n = 2, 3) is presented explicitly. © SISSA/ISAS 2003.
Resumo:
Additive and nonadditive genetic effects on preweaning weight gain (PWG) of a commercial crossbred population were estimated using different genetic models and estimation methods. The data set consisted of 103,445 records on purebred and crossbred Nelore-Hereford calves raised under pasture conditions on farms located in south, southeast, and middle west Brazilian regions. In addition to breed additive and dominance effects, the models including different epistasis covariables were tested. Models considering joint additive and environment (latitude) by genetic effects interactions were also applied. In a first step, analyses were carried out under animal models. In a second step, preadjusted records were analyzed using ordinary least squares (OLS) and ridge regression (RR). The results reinforced evidence that breed additive and dominance effects are not sufficient to explain the observed variability in preweaning traits of Bos taurus x Bos indicus calves, and that genotype x environment interaction plays an important role in the evaluation of crossbred calves. Data were ill-conditioned to estimate the effects of genotype x environment interactions. Models including these effects presented multicolinearity problems. In this case, RR seemed to be a powerful tool for obtaining more plausible and stable estimates. Estimated prediction error variances and variance inflation factors were drastically reduced, and many effects that were not significant under ordinary least squares became significant under RR. Predictions of PWG based on RR estimates were more acceptable from a biological perspective. In temperate and subtropical regions, calves with intermediate genetic compositions (close to 1/2 Nelore) exhibited greater predicted PWG. In the tropics, predicted PWG increased linearly as genotype got closer to Nelore. ©2006 American Society of Animal Science. All rights reserved.
Resumo:
Studies investigating the use of random regression models for genetic evaluation of milk production in Zebu cattle are scarce. In this study, 59,744 test-day milk yield records from 7,810 first lactations of purebred dairy Gyr (Bos indicus) and crossbred (dairy Gyr × Holstein) cows were used to compare random regression models in which additive genetic and permanent environmental effects were modeled using orthogonal Legendre polynomials or linear spline functions. Residual variances were modeled considering 1, 5, or 10 classes of days in milk. Five classes fitted the changes in residual variances over the lactation adequately and were used for model comparison. The model that fitted linear spline functions with 6 knots provided the lowest sum of residual variances across lactation. On the other hand, according to the deviance information criterion (DIC) and Bayesian information criterion (BIC), a model using third-order and fourth-order Legendre polynomials for additive genetic and permanent environmental effects, respectively, provided the best fit. However, the high rank correlation (0.998) between this model and that applying third-order Legendre polynomials for additive genetic and permanent environmental effects, indicates that, in practice, the same bulls would be selected by both models. The last model, which is less parameterized, is a parsimonious option for fitting dairy Gyr breed test-day milk yield records. © 2013 American Dairy Science Association.
Resumo:
Random regression models have been widely used to estimate genetic parameters that influence milk production in Bos taurus breeds, and more recently in B. indicus breeds. With the aim of finding appropriate random regression model to analyze milk yield, different parametric functions were compared, applied to 20,524 test-day milk yield records of 2816 first-lactation Guzerat (B. indicus) cows in Brazilian herds. The records were analyzed by random regression models whose random effects were additive genetic, permanent environmental and residual, and whose fixed effects were contemporary group, the covariable cow age at calving (linear and quadratic effects), and the herd lactation curve. The additive genetic and permanent environmental effects were modeled by the Wilmink function, a modified Wilmink function (with the second term divided by 100), a function that combined third-order Legendre polynomials with the last term of the Wilmink function, and the Ali and Schaeffer function. The residual variances were modeled by means of 1, 4, 6, or 10 heterogeneous classes, with the exception of the last term of the Wilmink function, for which there were 1, from 0.20 to 0.33. Genetic correlations between adjacent records were high values (0.83-0.99), but they declined when the interval between the test-day records increased, and were negative between the first and last records. The model employing the Ali and Schaeffer function with six residual variance classes was the most suitable for fitting the data. © FUNPEC-RP.