244 resultados para GLUINO DECAYS
Resumo:
Within a wide class of models, the CERN LEP2 lower limit of 95 GeV on the chargino mass implies gluinos are heavier than similar to 300 GeV. In this case electroweak (W) over tilde(1)(W) over tilde(1) production and (W) over tilde(1)(Z) over tilde(2) production are the dominant supersymmerry (SUSY) processes at the Fermilab Tevatron, and the extensively examined isolated trilepton signal From (W) over tilde(1)(Z) over tilde(2) production assumes an even greater importance. We update our previous calculations of the SUSY reach of luminosity upgrades of the Fermilab Tevatron in this channel incorporating (i) decay matrix elements in the computation of the momenta of leptons from chargino and neutralino decays, (ii) the trilepton background from W*Z* and W*gamma* production which, though neglected in previous analyses, turns out to be the dominant background, and finally, (iii) modified sets of cuts designed to reduce these new backgrounds and increase the range of model parameters for which the signal is observable. We show our improved projections for the reach for SUSY of both the Fermilab Main Injector and the proposed TeV33 upgrade. We also present opposite sign same flavor dilepton invariant mass distributions as well as the p(T) distributions of leptons in SUSY trilepton events, and comment upon how the inclusion of decay matrix elements impacts upon the Tevatron reach, as well as upon the extraction of neutralino masses.
Resumo:
We present detailed numerical results for the pion space-like electromagnetic form factor obtained within a recently proposed model of the pion electromagnetic current in a confining light-front QCD-inspired model. The model incorporates the vector meson dominance mechanism at the quark level, where the dressed photon with q(+) > 0 decays in an interacting quark-antiquark pair, which absorbs the initial pion and produces the pion in the final state.
Resumo:
We search for anomalous production of heavy-flavor quark jets in association with W bosons at the Fermilab Tevatron p(p) over bar Collider in final states in which the heavy-flavor quark content is enhanced by requiring at least one tagged jet in an event. Jets are tagged using one algorithm based on semileptonic decays of b/c hadrons, and another on their lifetimes. We compare e+jets (164 pb(-1)) and mu+jets (145 pb(-1)) channels collected with the D0 detector at root s = 1.96 TeV to expectations from the standard model and set upper limits on anomalous production of such events.
Resumo:
We combine the D0 measurement of the width difference between the light and heavy B-s(0) mass eigenstates and of the CP-violating mixing phase determined from the time-dependent angular distributions in the B-s(0)-> J/psi phi decays along with the charge asymmetry in semileptonic decays also measured with the D0 detector. With the additional constraint from the world average of the flavor-specific B-s(0) lifetime, we obtain Delta Gamma(s)equivalent to(Gamma(L)-Gamma(H))=0.13 +/- 0.09 ps(-1) and vertical bar phi(s)vertical bar=0.70(-0.47)(+0.39) or Delta Gamma(s)=-0.13 +/- 0.09 ps(-1) and vertical bar phi(s)vertical bar=2.44(-0.39)(+0.47). The data sample corresponds to an integrated luminosity of 1.1 fb(-1) accumulated with the D0 detector at the Fermilab Tevatron Collider.
Resumo:
A measurement of the top quark pair production cross section in proton antiproton collisions at an interaction energy of root s=1.96 TeV is presented. This analysis uses 405 +/- 25 pb(-1) of data collected with the D0 detector at the Fermilab Tevatron Collider. Fully hadronic t (t) over bar decays with final states of six or more jets are separated from the multijet background using secondary vertex tagging and a neural network. The t (t) over bar cross section is measured as sigma(t (t) over bar)=4.5(-1.9)(+2.0)(stat)(-1.1)(+1.4)(syst)+/- 0.3(lumi) pb for a top quark mass of m(t)=175 GeV/c(2).
Resumo:
We have measured the Lambda(b) lifetime using the exclusive decay Lambda(b)-> J/psi Lambda, based on 1.2 fb(-1) of data collected with the D0 detector during 2002-2006. From 171 reconstructed Lambda(b) decays, where the J/psi and Lambda are identified via the decays J/psi ->mu(+)mu(-) and Lambda -> p pi, we measured the Lambda(b) lifetime to be tau(Lambda(b))=1.218(-0.115)(+0.130)(stat)+/- 0.042(syst) ps. We also measured the B-0 lifetime in the decay B-0 -> J/psi(mu(+)mu(-))K-S(0)(pi(+)pi(-)) to be tau(B-0)=1.501(-0.074)(+0.078)(stat)+/- 0.050(syst) ps, yielding a lifetime ratio of tau(Lambda(b))/tau(B-0)=0.811(-0.087)(+0.096)(stat)+/- 0.034(syst).
Resumo:
The effect of lepton transverse polarization in B-0-->D(-)l(+)nu(l), B+-->(D) over bar (0)l(+)nu(l) decays (l=tau,mu) is analyzed within the framework of the standard model in the leading order of heavy quark effective theory. It is shown that a nonzero transverse polarization appears due to the electromagnetic final state interaction. The diagrams with intermediate D,D* mesons contributing to the nonvanishing P-T are considered. Regarding only the contribution of these mesons, the values of the tau-lepton transverse polarization averaged over the physical region in the B-0-->D(-)tau(+)nu(l) and B+-->(D) over bar (0)tau(+)nu(l) decays are equal to 2.60x10(-3) and -1.59x10(-3), respectively. In the case of muon decay modes the values of [P-T] are equal to 2.97x10(-4) and -6.79x10(-4).
Measurement of semileptonic branching fractions of B mesons to narrow D-** states - art. no. 1711803
Resumo:
Using the data accumulated in 2002-2004 with the D0 detector in proton-antiproton collisions at the Fermilab Tevatron collider with a center-of-mass energy of 1.96 TeV, the branching fractions of the decays B ->(D) over bar (0)(1)(2420)mu(+)nu(mu)X and B ->(D) over bar (*0)(2)(2460)mu(+)nu(mu)X and their ratio have been measured: B (b) over bar -> B)xB(B -> (D) over bar (0)(1)mu(+)nu(mu)X)xB((D) over bar (0)(1)-> D(*-)pi(+))=[0.087 +/- 0.007(stat)+/- 0.014(syst)]%; B((b) over bar -> B)xB(B ->(D) over bar (*0)(2)mu(+)nu(mu)X)xB((D) over bar (*0)(2)-> D(*-)pi(+))=[0.035 +/- 0.007(stat)+/- 0.008(syst)]% and [B(B ->(D) over bar (*0)(2)mu(+)nu(mu)X)xB((D) over bar (*0)(2)-> D(*-)pi(+))]/[B(B ->(D) over bar (0)(1)mu(+)nu(mu)X)xB((D) over bar (0)(1)-> D(*-)pi(+))]=0.39 +/- 0.09(stat)+/- 0.12(syst), where the charge conjugated states are always implied.
Resumo:
The simultaneous investigation of the pion electromagnetic form factor in the space- and timelike regions within a light-front model allows one to address the issue of nonvalence components of the pion and photon wave functions. Our relativistic approach is based on a microscopic vector-meson-dominance model for the dressed vertex where a photon decays in a quark-antiquark pair, and on a simple parametrization for the emission or absorption of a pion by a quark. The results show an excellent agreement in the space like region up to -10 (GeV/c)(2), while in timelike region the model produces reasonable results up to 10 (GeV/c)(2).
Resumo:
We present measurements of the Lambda(b)(0) lifetime in the exclusive decay channel Lambda(b)(0)-> J/psi Lambda(0), with J/psi ->mu(+)mu(-) and Lambda(0)-> p pi(-), the B-0 lifetime in the decay B-0-> J/psi K-S(0) with J/psi ->mu(+)mu(-) and K-S(0)->pi(+)pi(-), and the ratio of these lifetimes. The analysis is based on approximately 250 pb(-1) of data recorded with the D0 detector in p (p) over bar collisions at root s = 1.96 TeV. The Lambda(b)(0) lifetime is determined to be tau(Lambda(b)(0))=1.22(-0.18)(+0.22)(stat)+/- 0.04(syst) ps, the B-0 lifetime tau(B-0)=1.40(-) (+0.11)(0.10)(stat)+/- 0.03(syst) ps, and the ratio tau(Lambda(b)(0))/tau(B-0)=0.87(-) (+0.17)(0.14)(stat)+/- 0.03(syst). In contrast with previous measurements using semileptonic decays, this is the first determination of the Lambda(b)(0) lifetime based on a fully reconstructed decay channel.
Resumo:
We present a search for the production of a new heavy gauge boson W' that decays to a top quark and a bottom quark. We have analyzed 230 pb(-1) of data collected with the DO detector at the Fermilab Tevatron collider at a center-of-mass energy of 1.96 TeV. No significant excess of events above the standard model expectation is found in any region of the final state invariant mass distribution. We set upper limits on the production cross section of W' bosons times branching ratio to top quarks at the 95% confidence level for several different W, boson masses. We exclude masses between 200 and 610 GeV for a W' boson with standard-model-like couplings, between 200 and 630 GeV for a W, boson with right-handed couplings that is allowed to decay to both leptons and quarks, and between 200 and 670 GeV for a W' boson with right-handed couplings that is only allowed to decay to quarks. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
We measure the dimuon charge asymmetry A in p (p) over bar collisions at a center of mass energy root s=1960 GeV. The data was recorded with the D0 detector and corresponds to an integrated luminosity of approximately 1.0 fb(-1). Assuming that the asymmetry A is due to asymmetric B-0 <->(B) over bar (0) mixing and decay, we extract the CP-violation parameter of B-0 mixing and decay: ((epsilon B0))/(1+vertical bar epsilon B0 vertical bar 2)=(AB0)/(4)= -0.0023 +/- 0.0011(stat)+/- 0.0008(syst).A(B)(0) is the dimuon charge asymmetry from decays of B-0(B) over bar (0) pairs. The general case, with CP violation in both B-0 and B-s(0) systems, is also considered. Finally we obtain the forward-backward asymmetry that quantifies the tendency of mu(+) to go in the proton direction and mu(-) to go in the antiproton direction. The results are consistent with the standard model and constrain new physics.
Resumo:
CMS is a general purpose experiment, designed to study the physics of pp collisions at 14 TeV at the Large Hadron Collider ( LHC). It currently involves more than 2000 physicists from more than 150 institutes and 37 countries. The LHC will provide extraordinary opportunities for particle physics based on its unprecedented collision energy and luminosity when it begins operation in 2007. The principal aim of this report is to present the strategy of CMS to explore the rich physics programme offered by the LHC. This volume demonstrates the physics capability of the CMS experiment. The prime goals of CMS are to explore physics at the TeV scale and to study the mechanism of electroweak symmetry breaking - through the discovery of the Higgs particle or otherwise. To carry out this task, CMS must be prepared to search for new particles, such as the Higgs boson or supersymmetric partners of the Standard Model particles, from the start- up of the LHC since new physics at the TeV scale may manifest itself with modest data samples of the order of a few fb(-1) or less. The analysis tools that have been developed are applied to study in great detail and with all the methodology of performing an analysis on CMS data specific benchmark processes upon which to gauge the performance of CMS. These processes cover several Higgs boson decay channels, the production and decay of new particles such as Z' and supersymmetric particles, B-s production and processes in heavy ion collisions. The simulation of these benchmark processes includes subtle effects such as possible detector miscalibration and misalignment. Besides these benchmark processes, the physics reach of CMS is studied for a large number of signatures arising in the Standard Model and also in theories beyond the Standard Model for integrated luminosities ranging from 1 fb(-1) to 30 fb(-1). The Standard Model processes include QCD, B-physics, diffraction, detailed studies of the top quark properties, and electroweak physics topics such as the W and Z(0) boson properties. The production and decay of the Higgs particle is studied for many observable decays, and the precision with which the Higgs boson properties can be derived is determined. About ten different supersymmetry benchmark points are analysed using full simulation. The CMS discovery reach is evaluated in the SUSY parameter space covering a large variety of decay signatures. Furthermore, the discovery reach for a plethora of alternative models for new physics is explored, notably extra dimensions, new vector boson high mass states, little Higgs models, technicolour and others. Methods to discriminate between models have been investigated. This report is organized as follows. Chapter 1, the Introduction, describes the context of this document. Chapters 2-6 describe examples of full analyses, with photons, electrons, muons, jets, missing E-T, B-mesons and tau's, and for quarkonia in heavy ion collisions. Chapters 7-15 describe the physics reach for Standard Model processes, Higgs discovery and searches for new physics beyond the Standard Model.
Resumo:
We present a measurement of the t (t) over bar pair production cross section in p (p) over bar collisions at root s=1.96 TeV utilizing approximately 425 pb(-1) of data collected with the D0 detector. We consider decay channels containing two high p(T) charged leptons (either e or mu) from leptonic decays of both top-daughter W bosons. These were gathered using four sets of selection criteria, three of which required that a pair of fully identified leptons (i.e., e mu, ee, or mu mu) be found. The fourth approach imposed less restrictive criteria on one of the lepton candidates and required that at least one hadronic jet in each event be tagged as containing a b quark. For a top quark mass of 175 GeV, the measured cross section is 7.4 +/- 1.4(stat)+/- 1.0(syst) pb and for the current Tevatron average top quark mass of 170.9 GeV, the resulting value of the cross section is 7.8 +/- 1.8(stat+syst) pb.
Resumo:
We present a measurement of the cross section for Z production times the branching fraction to tau leptons, sigma.Br(Z ->tau(+)tau(-)), in p (p) over bar collisions at root s=1.96 TeV in the channel in which one tau decays into mu nu(mu)nu(tau), and the other into hadrons+nu(tau) or e nu(e)nu(tau). The data sample corresponds to an integrated luminosity of 226 pb(-1) collected with the D0 detector at the Fermilab Tevatron collider. The final sample contains 2008 candidate events with an estimated background of 55%. From this we obtain sigma.Br(Z ->tau(+)tau(-)) = 237 +/- 15(stat)+/- 18(sys)+/- 15(lum)pb, in agreement with the standard model prediction.