114 resultados para Fractions of phosphorus


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The effect of temperature on the activity of acerola's pectin methylesterase (PME) was studied to determine its heat-inactivation. The acerola's pectin methylesterase (PME; EC: 3.1.1.11) is very stable at 50 degrees C (10% loss of activity in 100 min) and needed 110 min for its inactivation at 98 degrees C. These values are much higher than the ones required for inactivation of the citrus PME, that has been reported as being equal to 1 min at 90 degrees C. Heat-inactivation of PME was shown to be nonlinear, suggesting the presence of fractions of PME with differing heat-stabilities. The times to inactive the enzyme at 98, 102 and 106 degrees C were 110, 10 and 2.17 min, respectively. The Z value (the rise in temperature necessary to observe a ten times faster heat-inactivation) was 4.71 degrees C. (C) 2000 Elsevier B.V. Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Vitreous samples were prepared in the (100 2 x) NaPO3-x WO3 (0 <= x <= 70) glass forming system using conventional melting-quenching methods. The structural evolution of the vitreous network was monitored as a function of composition by thermal analysis, Raman spectroscopy and high resolution one- and two-dimensional P-31 solid state NMR. Addition of WO3 to the NaPO3 glass melt leads to a pronounced increase in the glass transition temperatures, suggesting a significant increase in network connectivity. At the same time Raman spectra indicate that up to about 30 mol% WO3 the tungsten atoms are linked to some non-bridging oxygen atoms (W-O- or W=O bonded species), suggesting that the network modifier sodium oxide is shared to some extent between both network formers. W-O- W bond formation occurs only at WO3 contents exceeding 30 mol%. P-31 magic angle spinning (MAS)-NMR spectra, supported by two-dimensional J-resolved spectroscopy, allow a clear distinction between species having two, one, and zero P-O-P linkages. The possible formation of some anionic tungsten sites suggested from the Raman data implies an average increase in the degree of polymerization for the phosphorus species, which would result in diminished P-31/Na-23 interactions. This prediction is indeed confirmed by P-31{Na-23} and Na-23{P-31} rotational echo double resonance (REDOR) NMR results, which indicate that successive addition of WO3 to NaPO3 glass significantly diminishes the strength of phosphorus-sodium dipole-dipole couplings.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Milk yield, fat yield, and fat percentage during the first three lactations were studied using New York Holsteins that were milked twice daily over a 305-d, mature equivalent lactation. Those data were used to estimate variances from direct and maternal genetic effects, cytoplasmic effects, sire by herd interaction, and cow permanent environmental effects. Cytoplasmic line was traced to the last female ancestor using DHI records from 1950 through 1991. Records were 138,869 lactations of 68,063 cows calving from 1980 through 1991. Ten random samples were based on herd code. Samples averaged 4926 dams and 2026 cytoplasmic lines. Model also included herd-year-seasons as fixed effects and genetic covariance for direct-maternal effects. Mean estimates of the effects of maternal genetic variances and direct-maternal covariances, as fractions of phenotypic variances, were 0.008 and 0.007 for milk yield, 0.010 and 0.010 for fat yield, and 0.006 and 0.025 for fat percentage, respectively. Average fractions of variance from cytoplasmic line were 0.011, 0.008, and 0.009 for milk yield, fat yield, and fat percentage. Removal of maternal genetic effects and covariance for maternal direct effects from the model increased the fraction of direct genetic variance by 0.014, 0.021, and 0.046 for milk yield, fat yield, and fat percentage; little change in the fraction was due to cytoplasmic line. Exclusion of cytoplasmic effects from the model increased the ratio of additive direct genetic variance to phenotypic variance by less than 2%. Similarly, when sire by herd interaction was excluded, the ratio of direct genetic variance to phenotypic variance increased 1% or less.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The influence of structural features of tropical river humic substances (HS) on their capability to reduce mercury(II) in aqueous solutions was studied. The HS investigated were conventionally isolated from Rio Negro water-Amazonas State/Brazil by means of the collector XAD 8. In addition, the isolated HS were on-line fractionated by tangential-flow multistage ultrafiltration (nominal molecular-weight cut-offs: 100, 50, 30, 10, 5 kDa) and characterized by potentiometry and UV/VIS spectroscopy. The reduction of Hg(II) ions to elemental Hg by size-fractions of Rio Negro HS was assessed by cold-vapor AAS (CVAAS). UV/VIS spectrometry revealed that the fractions of high molecular-size (F-1 > 100 kDa and F-2: 50-100 kDa) have a higher aromaticity compared to the fractions of small molecular-size (F-5: 5-10 kDa, F-6: < 5 kDa). In contrast, the potentiometric study showed different concentration of functional groups in the studied HS fractions. The reduction of Hg(II) by aquatic HS fractions at pH 5 proceeded in two steps (I, II) of slow first order kinetics (t(1/2) of I: 160 min, t(1/2) of II: 300 min) weakly influenced by the molecular-size, in contrast to the differing degree of Hg(II) reduction (F-5 > F-2 > > F-1 > F-3 > F-4 > > F-6). Accordingly, Hg(II) ions were preferably reduced by HS molecules having a relatively high ratio of phenolic/carboxylic groups and a small concentration of sulfur. From these results a complex 'competition' between reduction and complexation of mercury(II) by aquatic HS occurring in tropical rivers such as the Rio Negro can be suggested. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Agaricus blazei Murrill ss. Heinem, known as the sun mushroom or himematsutake, is a basidiomycete native to Brazil, which is popular for its medicinal properties. The aim of this study was to test hexane extracts (one fraction and its four sub-fractions) of A. blazei for bioactivity in cultured mammalian cells (CHO-K1). The comet assay, the colony forming assay (CFA) and CHO/HGPRT gene mutation assay were used respectively to determine genotoxicity, cytotoxicity and antimutagenicity of these extracts at different concentrations. The cells were incubated in culture medium and treated for 3 h according to the standard protocol for each assay. The DNA damage-inducing agent ethylmethane sulfonate (EMS) was utilized as the positive control and also in combination with extracts to test for a protective effect. Statistical analysis of the data was performed using analysis of variance (ANOVA) and Tukey's test. A relationship between cytotoxicity and genotoxicity could be established and two extracts EH6B and EH6D showed a protective tendency, while the others did not, with the primary extract EH6 causing the most substantial damage to genetic material. These findings warrant more in-depth studies of the active principles of this mushroom. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study was conducted to study the spatial variability of phosphorus, estimating it through cokriging taking as covariables the size fractions of soil. The study was conducted at the experimental farm INCAPER-ES. The soil was sampled in the canopy projection of culture and depth of 0-0.20 meters in an irregular mesh with 109 points. The data were initially submitted to a descriptive analysis and correlation. Through geostatistics was made the adjustment of the variograms. The P showed significant correlation with the sand and clay fractions indicating that areas with higher concentrations of clay have lower availability of this nutrient. Both fractions have equal performance as co-variable in the estimate of the levels of P in the soil.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To investigate further the age-related reduction in muscle protein synthesis activity found previously using a crude polyribosome/pH 5 system (Pluskal et al., 1984), a 0.5M KCl washing procedure was utilized to remove the nonribosomal factors from polyribosomes isolated from male Sprague-Dawley rats in the following age groups: young (1 to 2 months), mature (12 months), and aged (22 to 24 months). Using a common source of enriched elongation factor fraction from young animals, it was not possible to demonstrate any significant difference (p > .05) in protein synthesis between the 0.5M KCl-washed polyribosomes isolated from the various age groups. Using a cell-free system containing young salt washed polyribosomes stimulated by the addition of 0.5M KCl-wash fractions, however, it was shown that the mature and aged salt-wash fractions were less (p < .05) active than material from young animals. Thus, the observed decline in protein synthesis efficiency during aging may be attributed to a reduced capacity to promote initiation/elongation by the nonribosomal salt wash fractions of muscle polyribosomes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The antibody response against the antigen sheep red blood cells (SRBC) was investigated in mice pre-treated with formalin-killed Paracoccidioides brasiliensis or with cell wall fractions of the fungus. Pre-treatment with P. brasiliensis, as well as with the F1 fraction and beta-glucan significantly increased the anti-SRBC antibody response in the experimental groups as compared to the control group that received only SRBC. This immunomodulatory effect varied with the different doses employed and with pre-treatment time. We conclude that the cell wall fractions of P. brasiliensis might play an important role in the hypergammaglobulinemia associated with Paracoccidioidomycosis. © 1993 Kluwer Academic Publishers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Anchietia salutaris tea is traditionally used in Brazil to treat allergies, suggesting it contains compounds with antagonistic activity on the allergic mediators. We have evaluated extracts and semi-purified fractions of Anchietia salutaris as a source of compounds having this type of antagonism on the contraction induced in guinea-pig lung parenchymal strips and on platelet aggregation and shape change. After 10 min pre-incubation dichloromethane extracts containing 30 or 100 μg mL-1 inhibited the contraction induced by prostaglandin D2 (PGD2) in guinea-pig lung parenchymal strips with dose ratios (DR) of 0.76 ± 0.14 and 0.93 ± 0.19, respectively; the amount of inhibition depended both on the concentration and on the time of preincubation (DR after 30 min pre-incubation was 1.21 ± 0.51). The dichloromethane extract and its semi-purified fractions also inhibited the contractions induced by U46619, a more potent, stable, synthetic agonist of thromboxane A2 (TxA2) prostanoid (TP) receptors, the receptors acted upon by PGD2 to produce lung contractions. The dichloromethane extract did not inhibit the lung parenchymal contractions induced by histamine, leukotriene D4 (LTD4) or platelet-activating factor (PAF). Platelet aggregation induced by U46619, adenosine 5'-diphosphate (ADP) or PAF was not inhibited by the dichloromethane extract. Indeed, the extract potentiated platelet aggregation induced by low concentrations of these agonists and also potentiated the shape change induced by U46619. These results imply that the dichloromethane extract of Anchietia salutaris and its semipurified fractions contain an active principle that competitively inhibits TxA2 TP receptors, the stimulation of which causes lung parenchymal contraction. The inhibition seems to be selective for this receptor subtype, because the extract fails to inhibit platelet aggregation or shape change. This provides additional support of earlier reports suggesting the occurrence of TP receptor subtypes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aquatic humic substances (HS) investigated in this study with respect to their binding capability towards mercury(II) were isolated from the river Rio Negro, Amazonas State - Brazil, by means of the adsorbent XAD 8. Labile/inert fractions of inorganic Hg(II) complexes formed with these HS were characterized using an ion-exchange batch and column technique, respectively, based on Chelite S. This collector exhibits high Hg(II) distribution coefficients, Kd, up to the order of 104 decreasing, however, in the case of small Hg(II)/HS ratios (< 0.1 μg Hg(II) / mg HS). The influence of different complexation parameters (ratio of Hg(II)/HS, pH, contact time, complexing time) relevant for Hg(II) binding in aquatic environments was assessed. The Hg(II) lability in dissolved HS is mainly influenced by the mass ratio of Hg(II)/HS and the ageing of Hg(II)-HS species formed. This is particularly obvious in the case of low Hg(II) loading of HS where slow transformation processes of freshly formed Hg(II)-HS species significantly decrease their lability, leading to incomplete recoveries (< 20%) of the total Hg(II) bound to HS.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work five methods of heat treatments are investigated in order to obtained convenient volume fractions of ferrite, bainite, martensite and retained austenite, starting with a low carbon steel and seeking the distinction of the phases, through optical microscopy. Specific chemical etching is improved. The results in tensile and fatigue tests were accomplished and the results were related with the microstructural parameters. The results show that the mechanical properties are closely related with the phases, grains size and the phases morphology. Copyright © 2001 Society of Automotive Engineers, Inc.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aluminum matrix composites are currently considered as promising materials for tribological applications in the automotive, aircraft and aerospace industries due to their great advantage of a high strength-to-weight ratio. A superior combination of surface and bulk mechanical properties can be attained if these composites are processed as functionally graded materials (FGM's). In this work, homogeneous aluminum based matrix composite, cast by gravity, and aluminum composites with functionally graded properties, obtained by centrifugal cast, are tested against nodular cast iron in a pin-on-disc tribometer. Three different volume fractions of SiC reinforcing particles in each FGM were considered in order to evaluate their friction and wear properties. The sliding experiments were conducted without lubrication, at room temperature, under a normal load of 5 N and constant sliding speed of 0.5 ms-1. The worn surfaces as well as the wear debris were characterized by SEM/EDS and by atomic force microscopy (AFM). The friction coefficient revealed a slightly decrease (from 0.60 to 0.50) when FGM's are involved in the contact instead of the homogeneous composite. Relatively low values of the wear coefficient were obtained for functionally graded aluminum matrix composites (≈10-6 mm3N-1 m-1), which exhibited superior wear resistance than the homogeneous composite and the opposing cast iron surface. Characterization of worn surfaces indicated that the combined effect of reinforcing particles as load bearing elements and the formation of protective adherent iron-rich tribolayers has a decisive role on the friction and wear properties of aluminum matrix composites.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work has as objective to demonstrate technical and economic viability of hydrogen production utilizing glycerol. The volume of this substance, which was initially produced by synthetic ways (from oil-derived products), has increased dramatically due mainly to biodiesel production through transesterification process which has glycerol as main residue. The surplus amount of glycerol has been generally utilized to feed poultry or as fuel in boilers, beyond other applications such as production of soaps, chemical products for food industry, explosives, and others. The difficulty to allocate this additional amount of glycerol has become it in an enormous environment problem, in contrary to the objective of biodiesel chain, which is to diminish environmental impact substituting oil and its derivatives, which release more emissions than biofuels, do not contribute to CO2-cycle and are not renewable sources. Beyond to utilize glycerol in combustion processes, this material could be utilized for hydrogen production. However, a small quantity of works (theoretical and experimental) and reports concerning this theme could be encountered. Firstly, the produced glycerol must be purified since non-reacted amounts of materials, inclusively catalysts, contribute to deactivate catalysts utilized in hydrogen production processes. The volume of non-reacted reactants and non-utilized catalysts during transesterification process could be reutilized. Various technologies of thermochemical generation of hydrogen that utilizes glycerol (and other fuels) were evaluated and the greatest performances and their conditions are encountered as soon as the most efficient technology of hydrogen production. Firstly, a physicochemical analysis must be performed. This step has as objective to evaluate the necessary amount of reactants to produce a determined volume of hydrogen and determine thermodynamic conditions (such as temperature and pressure) where the major performances of hydrogen production could be encountered. The calculations are based on the process where advance degrees are found and hence, fractions of products (especially hydrogen, however, CO2, CO, CH4 and solid carbon could be also encountered) are calculated. To produce 1 Nm3/h of gaseous hydrogen (necessary for a PEMFC - Proton Exchange Membrane Fuel Cell - containing an electric efficiency of about 40%, to generate 1 kWh), 0,558 kg/h of glycerol is necessary in global steam reforming, 0,978 kg/h of glycerol in partial oxidation and cracking processes, and 0,782 kg/h of glycerol in autothermal reforming process. The dry reforming process could not be performed to produce hydrogen utilizing glycerol, in contrary to the utilization of methane, ethanol, and other hydrocarbons. In this study, steam reforming process was preferred due mainly to higher efficiencies of production and the need of minor amount of glycerol as cited above. In the global steam reforming of glycerine, for one mole of glycerol, three moles of water are necessary to produce three moles of CO2 and seven moles of H2. The response reactions process was utilized to predict steam reforming process more accurately. In this mean, the production of solid carbon, CO, and CH4, beyond CO2 and hydrogen was predicted. However, traces of acetaldehyde (C2H2), ethylene (C2H4), ethylene glycol, acetone, and others were encountered in some experimental studies. The rates of determined products obviously depend on the adopted catalysts (and its physical and chemical properties) and thermodynamic conditions of hydrogen production. Eight reactions of steam reforming and cracking were predicted considering only the determined products. In the case of steam reforming at 600°C, the advance degree of this reactor could attain its maximum value, i.e., overall volume of reactants could be obtained whether this reaction is maintained at 1 atm. As soon as temperature of this reaction increases the advance degree also increase, in contrary to the pressure, where advance degree decrease as soon as pressure increase. The fact of temperature of reforming is relatively small, lower costs of installation could be attained, especially cheaper thermocouples and smaller amount of thermo insulators and materials for its assembling. Utilizing the response reactions process in steam reforming, the predicted volumes of products, for the production of 1 Nm3/h of H2 and thermodynamic conditions as cited previously, were 0,264 kg/h of CO (13% of molar fraction of reaction products), 0,038 kg/h of CH4 (3% of molar fraction), 0,028 kg/h of C (3% of molar fraction), and 0,623 kg/h of CO2 (20% of molar fraction). Through process of water-gas shift reactions (WGSR) an additional amount of hydrogen could be produced utilizing mainly the volumes of produced CO and CH4. The overall results (steam reforming plus WGSR) could be similar to global steam reforming. An attention must to be taking into account due to the possibility to produce an additional amount of CH4 (through methanation process) and solid carbon (through Boudouard process). The production of solid carbon must to be avoided because this reactant diminishes (filling the pores) and even deactivate active area of catalysts. To avoid solid carbon production, an additional amount of water is suggested. This method could be also utilized to diminish the volume of CO (through WGSR process) since this product is prejudicial for the activity of low temperature fuel cells (such as PEMFC). In some works, more three or even six moles of water are suggested. A net energy balance of studied hydrogen production processes (at 1 atm only) was developed. In this balance, low heat value of reactant and products and utilized energy for the process (heat supply) were cited. In the case of steam reforming utilizing response reactions, global steam reforming, and cracking processes, the maximum net energy was detected at 700°C. Partial oxidation and autothermal reforming obtained negative net energy in all cited temperatures despite to be exothermic reactions. For global steam reforming, the major value was 114 kJ/h. In the case of steam reforming, the highest value of net energy was detected in this temperature (-170 kJ/h). The major values were detected in the cracking process (up to 2586 kJ/h). The exergetic analysis has as objective, associated with physicochemical analysis, to determine conditions where reactions could be performed at higher efficiencies with lower losses. This study was performed through calculations of exergetic and rational efficiencies, and irreversibilities. In this analysis, as in the previously performed physicochemical analysis, conditions such as temperature of 600°C and pressure of 1 atm for global steam reforming process were suggested due to lower irreversibility and higher efficiencies. Subsequently, higher irreversibilities and lower efficiencies were detected in autothermal reforming, partial oxidation and cracking process. Comparing global reaction of steam reforming with more-accurate steam reforming, it was verified that efficiencies were diminished and irreversibilities were increased. These results could be altered with introduction of WGSR process. An economic analysis could be performed to evaluate the cost of generated hydrogen and determine means to diminish the costs. This analysis suggests an annual period of operation between 5000-7000 hours, interest rates of up to 20% per annum (considering Brazilian conditions), and pay-back of up to 20 years. Another considerations must to be take into account such as tariffs of utilized glycerol and electricity (to be utilized as heat source and (or) for own process as pumps, lamps, valves, and other devices), installation (estimated as US$ 15.000 for a plant of 1 Nm3/h) and maintenance cost. The adoption of emission trading schemes such as carbon credits could be performed since this is a process with potential of mitigates environment impact. Not considering credit carbons, the minor cost of calculated H2 was 0,16288 US$/kWh if glycerol is also utilized as heat sources and 0,17677 US$/kWh if electricity is utilized as heat sources. The range of considered tariff of glycerol was 0-0,1 US$/kWh (taking as basis LHV of H2) and the tariff of electricity is US$ 0,0867 US$/kWh, with demand cost of 12,49 US$/kW. The costs of electricity were obtained by Companhia Bandeirante, localized in São Paulo State. The differences among costs of hydrogen production utilizing glycerol and electricity as heat source was in a range between 0,3-5,8%. This technology in this moment is not mature. However, it allows the employment generation with the additional utilization of glycerol, especially with plants associated with biodiesel plants. The produced hydrogen and electricity could be utilized in own process, increasing its final performance.